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RESUMO

Os eventos extremos de mercado sdo de grande importancia para gerentes de
risco, operadores do mercado financeiro, administradores de carteiras de
investimentos, reguladores e gerenciadores de reservas de margens em bolsas de
derivativos. Embora muitos artigos na literatura de financas tenham tentado explicar
eventos extremos de mercado, € muito dificil encontrar explicacfes racionais para
estas circunstancias ndo usuais. Este trabaho utiliza a Teoria dos Vaores Extremos
para anadlisar 0 comportamento de eventos extremos no mercado de derivativos
acionérios brasileiro, visando a construcéo de ferramentas estatisticas que auxiliem

no gerenciamento de risco.



ABSTRACT

Extreme market events are of great importance for risk managers, traders,
portfolio managers, regulators and margin committees in derivatives exchanges.
Although many articles in the finance literature have attempted to explain extreme
market events, it is very difficult to find a rational explanation to these unusual
circumstances. This work uses the Extreme Value Theory to anayze the behavior of

extreme events in brazilian stock derivatives market.
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CAPITULO 1-APRESENTACAO DO TRABALHO

1.1 A Empresa

A empresa na qua foi feito o trabalho € o Banco J. P. Morgan, braco
brasileiro do JPMorganChase Bank, o segundo maior banco dos Estados Unidos,
instituicao cujas acdes fazem parte do indice DJA (Dow Jones Industrial Average),
0 mais importante e negociado indice de agdes (sdo 30 empresas presentes no indice,
e apenas outro banco, o Citigroup, faz parte do Dow Jones). A receita operacional
liquida do JPMorganChase no ano de 2002 foi US$ 3,4 bilhdes.

O JPMorganChase Bank foi formado em 1 de Janeiro de 2001, como
resultado da fusdo entre o The Chase Manhattan Bank e o The J. P. Morgan Bank. O
banco Chase Manhattan adquiriu controle sobre o J. P. Morgan, um banco fundado
em Londres em 1850 por Charles Peabody, que originou a conhecida House of
Morgan e originou ainda o banco Morgan Stanley Dean Witter e o Banco Morgan
Grenfell de Londres (adquirido posteriormente pelo Deutsche Bank). O J. P. Morgan
teve papel muito importante na histéria dos Estados Unidos pois financiou a
construcéo das estradas de ferro que cortariam o pais e ainda teve na figura do
banqueiro John Pierpont Morgan uma das pessoas consideradas mais influentes na
primeira metade do século 20. John Pierpont Morgan ainda € considerado o maior
banqueiro internacional de todos os tempos, e ainda foi o criador do embrido do
FED, o banco central estadunidense. Atribui-se a ele o mérito de ter evitado duas
grandes crises da economia dos Estados Unidos, e ter gjudado a diminuir os efeitos
da crise de 1929. J4 conhecido como Morgan Guaranty, o J. P. Morgan reestruturou
as dividas de varios paises no chamado Plano Brady, que incluiu a reestruturacéo da

divida externabrasileira
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Tabela 1.1- Empresas participantes do indice Dow Jones Industrials

Fonte: “site” Dow Jones

O Chase Manhattan € também um banco muito antigo, e foi administrado por
integrantes da familia Rockefeller. Foi fundado ainda no século XVIII como brago
financeiro da companhia de fornecimento de &gua da cidade de Nova Y ork. Outros
bancos t&o ou mais antigos foram adquiridos, em varias fusdes, destacando-se a
fusdo com o The Chemical Bank (ocorrida em 1996), banco fundado em 1823 a
partir de uma indlstria quimica (que por sua vez adquiriu 0 The Manufacturers
Hanover Corporation Bank em 1992, sendo este um banco fundado em 1812 a partir
daNew Y ork Manufacturing Company).

No Brasil, o Banco J. P. Morgan resultou da fusdo entre os bracos brasileiros
das instituicdes americanas, o0 Banco Chase Manhattan e o Banco J. P. Morgan
(antigo). O antigo banco J. P. Morgan ingressou no mercado brasileiro através da
aquisicdo da carta patente da Distrivolks e adquirindo a Banca Commerciale Italiana.
E o Banco Lar Brasleiro (antiga denominacdo do Chase no Brasil) fundiu-se ao
NorChem (resultante da fusdo do Chemical Bank no Brasil com o Banco Noroeste)
para formar o Banco Chase Manhattan. Em janeiro de 1999 o Chase Manhattan
adquiriu o Banco Patriménio de Investimentos e a corretora Robert Fleming,
conhecida anteriormente como Flemings.

O Banco J. P. Morgan é um dos 25 bancos “dealers’ (bancos mais ativos no
mercado financeiro e que participam diretamente dos leildes promovidos pelo BC)
do Banco Central e € um dos mais ativos bancos em movimentacdo financeira na
BM&F (Bolsa de Mercadorias e Futuros).



1.2 Motivacéo

Segunda-feira, 19 de outubro de 1987, o indice Dow Jones Industrial Average
caiu 22 % , fazendo desaparecer meio trilh&o de délares norte-americanos em valores
de acles. Este evento ficou conhecido como Segunda-Feira Negra, ou “Black
Monday”. No dia seguinte, os principais mercados acionarios asiéticos e europeus
submergiram. Uma década e meia depois, com diversos trabal hos publicados sobre o
assunto, gerentes de risco, operadores de mercado, administradores de carteiras de
investimento e reguladores ainda se perguntavam o que realmente tinha causado
agueles eventos ndo usuais em 1987.

Quarta-feira, 16 de setembro de 1992, especuladores forgaram a libra inglesa
a ser negociada aém de sua banda cambia delimitada pelo Banco Central Inglés.
Este evento ficou conhecido como Quarta-Feira Negra, ou “Black Wednesday”.
Estes dois acontecimentos podem ser considerados eventos raros, ou sgja, eventos
n&o usualmente observados pelo mercado.

Os mercados emergentes também tiveram seus eventos extremos. Alguns
exemplos podem ser citados, como: a desvalorizagdo da moeda mexicana (final do
ano de 1994), a crise relacionada com o Brady Bond (inicio de 1995), a série de
desvalorizacOes asiaticas (durante todo 0 ano de 1997), a crise russa (final de 1998),
a desvalorizagdo da moeda brasileira (inicio de 1999), a crise argentina (ano de 2001)
e mais recentemente a crise de confianga que assolou o Brasil durante o ano passado
(a partir de julho de 2002). Todos estes acontecimentos s&0 eventos raros. Durantes
estes acontecimentos observou-se a ata volatilidade que os mercados (a¢les, renda
fixa, de cBmbio e de futuros) experimentam. Nestes periodos de extrema volatilidade
muitos ativos de renda fixa comecam a ser encarados pelos operadores do mercado
financeiro como ativos de renda variavel.

Eventos extremos de mercado sdo de grande importancia para a economia
como um todo. Por exemplo, Moore(1983) mostra que as principais recessdes
econdmicas sdo seguidas por declinios substanciais nos pregos de acoes.

Tais eventos também sdo de extrema importancia para 0 gerenciamento de
risco das posi¢Oes das ingtituicdes participantes do mercado financeiro. Dado que

todas as metodologias utilizadas para estimar o VaR (* Value-at-Risk”) de uma



carteira de investimentos (Jorion(1997)) assumem que o comportamento do mercado
€ estavel, eventos extremos demandam uma abordagem especia dos gerentes de
riscos. Ou sgja, metodologias para estimar 0 VaR de uma carteira de investimentos
ndo foram planegjadas para cobrir eventos extremos de mercado. Os impactos de um
evento raro em uma carteira de investimentos podem ser analisados através de um
teste de estresse. Resumidamente, o teste de estresse € a simulacdo de um evento raro
para se estudar o comportamento de uma carteira de investimentos qualquer.
Entretanto, o teste de estresse ndo foi plangjado para cobrir 0 comportamento médio
dos mercados financeiros. Logo, percebe-se que o VaR de uma carteira de
investimentos ndo elimina as deficiéncias de um teste de estresse, nem o0s
procedimentos do Ultimo suprem as fraquezas do primeiro (Duarte(1997)). O melhor
a se fazer € um trabalho conjunto com as duas ferramentas sendo utilizadas como
complementares uma a outra.

A previsdo de eventos raros € geramente dificil. Os fundamentos de mercado
de Bierman(1991,1995) néo indicaram que os precos das ages seriam absurdamente
baixos como em 1929 e 1987. A identificacdo de ataques especulativos e
desvalorizacdo excessiva de ativos financeiros também nédo € possivel utilizando
teorias econdmicas e de financas (Flood and Garber(1994)), embora estes eventos
possam parecer bastante &bvios depois que tenham ocorrido. Resumindo,
independentemente da possibilidade dos fundamentos de mercado serem capazes de
justificar os pregos correntes, os dados historicos sdo a prova de que sempre existem

cenarios razoaveis para que um evento raro de mercado aconteca.

1.3 Objetivodo Trabalho

O objetivo do trabalho é utilizar a Teoria dos Vaores Extremos (TVE) para
andisar eventos extremos no mercado de derivativos acionarios brasileiro. E
interessante frisar que a TVE néo prevé o futuro certamente, mas fornece modelos
edtatisticos que permitem tratar a incerteza que cerca tais eventos ndo usuais,
auxiliando assim o processo decisorio dada a sua funcdo de ferramenta medidora de

risco.



A andlise de risco do mercado de derivativos acionérios brasileiro sera
realizada através da série de futuro do indice BOVESPA. O futuro de IBOVESPA,
ou futuro do indice BOVESPA, indice brasileiro de acBes mais importante, mede o
valor de mercado de uma carteira de acbes hipotética na Bolsa de Valores de Séo
Paulo. O peso relativo de cada agdo na carteira € baseado no montante negociado nos
ultimos meses na Bolsa de Vaores de S0 Paulo. O futuro do indice BOVESPA é
rebalanceado trimestralmente. Mais detalhes do indice serdo apresentados no
capitulo 2.

A andlise de risco sera baseada na construcéo de trés indicadores de risco,

explicitados a seguir:

Periodo do Retorno u

O periodo de retorno u pode ser definido como sendo o tempo médio de
espera para que ocorra um retorno diario maior ou menor que um dado vaor de corte

u.

Probabilidade de Ocorréncia de Eventos Extremos

Este indicador é dado pela probabilidade de ocorrer um retorno diario acima

ou abaixo de um dado valor de corte para um espago temporal fixo especificado.

Evento de t-meses

O evento de t-meses é um evento extremo que se espera observar pelo menos

umavez em t meses.

Para se construir tais indicadores € necessario primordiamente se conhecer a
distribuicdo de probabilidade dos valores extremos das séries de retornos de futuro
do indice BOVESPA. Tendo a distribuicdo dos valores definida, através de algumas
suposicdes e de manipulacles estatisticas e matematicas obtém-se os indicadores

Propostos.



1.4 Organizacdo do Trabalho

O trabaho sera organizado em 5 capitulos como exemplificado a seguir.

No capitulo 2, apresenta-se minuciosamente 0 mercado de derivativos
(futuros, swaps e opcdes) citando os principais produtos e como sao comercializados.
Ainda neste capitulo apresenta-se uma discussdo sobre o método de andlise de risco
“Value-at-Risk”. Em seguida, a Teoria dos Vaores Extremos é introduzida, a qual
fornece resultados necessé&rios para a determinagdo da distribuicdo assintética dos
valores extremos dos retornos do futuro do indice BOVESPA. Por ultimo, descreve-
se 0 método de estimacao de parémetros que serd utilizado para estimar parametros
dadistribuicdo que os dados em estudo apresentam.

No capitulo 3 analisam-se exploratoriamente os dados e em seguida aplica-se
a teoria dos valores extremos. O objetivo do capitulo € entender a distribuicéo dos
valores extremos dos retornos do futuro indice BOVESPA no mercado brasileiro. O
trabalho foca na utilizacdo do método da maxima verossimilhanca para estimagdo
dos parémetros da distribuicdo de valores extremos, descrito no capitulo 2. Depois da
estimac@o dos par@metros realizam-se testes estatisticos para testar a aderéncia da
amostra real a0 modelo estimado. O fluxo de tarefas a desenvolver nesta etapa do

trabalho é enumerado respectivamente abai xo:

1. Aquisicao da série histérica do futuro do indice BOVESPA.

2. Andlise exploratéria preliminar dos dados.

3. Construcéo das séries de retornos do futuro do indice BOVESPA.

4. Estimagao dos parametros das distribuic¢des de valores extremos.

5. Teste de aderéncia-melhor distribuicéo de valores extremos.

O capitulo 4 é o capitulo da construcéo e anadlise dos indicadores de risco

citados. Esta andlise pode ser bastante Util aos administradores de carteiras de



investimentos, reguladores do mercado financeiro e etc, na medida que elas os
auxiliam a entender melhor o comportamento e 0s riscos associados ao futuro do
indice BOVESPA, e que pode ser ampliado para outros mercados.

O capitulo 5 é o capitulo de fechamento. Neste capitulo sera feito um teste
dos indicadores construidos no capitulo 4. O teste sera baseado na comparagéo dos
nimeros estimados no capitulo 4 com os nimeros observados. Apds o teste serdo
desenvolvidas as conclusdes do trabalho, sugestbes de melhoria e propostas de

continuagéo do trabalho.



CAPITULO 2—-CONCEITOSIMPORTANTES

2.1 Introducéo

Este € um capitulo de grande importancia para o desenvolvimento do
trabalho. Iniciddmente serd realizada uma apresentacdo do mercado financeiro de
derivativos, seus participantes e seus principais produtos. Logo em seguida sera
apresentada a Teoria dos Vaores Extremos, a qual sera aplicada posteriormente para
0 desenvolvimento do trabalho. Por Ultimo serd exposto um método de estimagéo de
pardmetros, no caso 0 méodo de maxima verossimilhanca, que sera utilizado para

estimar os parametros das distribui¢cdes de probabilidade dos dados em estudo.

2.2 O Mercado de Derivativos

Derivativos sdo contratos que estipulam trocas financeiras entre as partes,
baseadas em determinados precos.

2.2.1 Principais Car acteristicas

Um contrato derivativo prevé agdes que uma parte deve tomar (pagamentos,
recebimentos, compras ou vendas) frente a outra parte, em relacdo a um ou mais
ativos ou indices, que sdo chamados objetos ou ativos subjacentes ao contrato. O
contrato ndo precisa obrigar a uma agdo sobre o objeto (compra ou venda), mas pode
obrigar a uma troca de valores baseada no preco do objeto. O derivativo especifica as
condigoes dessas agles, dentre as quais as datas em que deveréo ser executadas.

Os termos de um derivativo sdo negociados, e deles depende o resultado final
(lucro ou prejuizo) de cada parte. Os tipos mais comuns tém um Unico parametro de
negociacao, que é o prego ou cotacdo do derivativo.

Os contratos derivativos tém uma data de vencimento, na qual as obrigaces
das partes se encerram. Essa data de vencimento costuma ser também a data em que
as partes quitam suas obrigacdes (liquidacdo do contrato), e também a data final para

a coleta dos pregos dos objetos que definirdo o valor dessas obrigacoes.



Nos mercados derivativos, derivativos sdo transacionados. Na maioria dos
mercados derivativos, existe ndo so a possibilidade de ingressar em transacGes com
derivativos, mas de sair de transagches em que se ingressou anteriormente (0S
conceitos equivalentes a adquirir e desfazer-se). Ou sgja, um contrato derivativo néo
precisa ser necessariamente levado a vencimento, podendo, dependendo do mercado
em que € transacionado, ser encerrado antes do vencimento, com a devida
compensacdo financeira das partes.

Futuros, swaps e opcdes sdo 0s trés tipos basicos de derivativos, que serdo
oportunamente explicados. Cada tipo de derivativo possui um funcionamento
diferente.

Os contratos derivativos que uma parte possui em aberto (a serem liquidados)
constituem a sua posi¢do (ou as suas posi¢des). O conceito de posicdo esta para 0s
derivativos assim como o conceito de estoque esta para os bens e ativos.

Os derivativos sdo geralmente cotados sobre uma unidade de ativo-objeto
(por exemplo: o futuro de délar é negociado em reais por cada 1 délar, o ouro futuro
€ cotado em reais por grama, etc.). Porém, quando se trata de contratos padronizados
para negociacdo em bolsa, geralmente se ingtitui uma unidade de negociagdo mais
conveniente, chamada |ote-padrdo, lote ou simplesmente “contrato”. Assim, um lote
de ddlar futuro € um contrato sobre 50.000 dolares, um lote de ouro futuro é um
contrato sobre 250 gramas de ouro. Posi¢des em derivativos padronizados costumam
ser medidas em lotes. Posicdes em derivativos ndo padronizados séo medidas em
unidades de ativo-objeto. indices de ages e outros indices que ndo facam referéncia
direta a uma certa quantidade de ativos séo geramente cotados em pontos, e cada
lote de contrato derivativo sobre eles refere-se a um valor do ponto, que € o
multiplicador que transforma pontos em dinheiro. Assm, o vaor do ponto
desempenha 0 mesmo papel que o multiplicador do lote-padréo.

A quantidade de ativo objeto referenciada em um derivativo pode ser
expressa em valor financeiro, o que d4 uma idéia do tamanho da aposta envolvida.
Este € o valor nocional (ou nominal) de uma transacdo com derivativos. O valor
econdmico efetivamente envolvido € geramente pequeno se comparado com o valor
nocional. O valor nocional pode ser lido como o principal de uma operacdo, ao passo

gue o valor econdmico corresponderia as variages desse principa. Assim, estima-se



gue as transagdes com derivativos envolveram USD 40 trilhdes em valores nominais
em 1996, mas que a quantidade de dinheiro que realmente foi movimentada por esses
contratos tenha sido pouco maior que USD 1 trilh&o.

O valor nociona ndo é uma quantidade real de dinheiro. A ndo ser em casos
de liquidacdo fisica, ndo é recebivel nem exigivel. O objetivo dos derivativos ndo é
movimentar o valor nocional, mas Ssm movimentar o valor econdmico, entre as

partes.

2.2.2 Ativo e Passivo de um Contrato de Derivativos

Um contrato de derivativos geralmente associa, a cada parte, um direito e
uma obrigagdo. Assim, contratos derivativos possuem ativo e passivo embutidos
simultaneamente. O valor econdmico de um contrato nada mais € do que 0 excesso
do ativo sobre o passivo no contrato. Alguns tipos de contratos (ex: swaps)
mencionam explicitamente o ativo e 0 passivo envolvidos. Outros tipos citam apenas
a regra de liquidacdo, da qual podemos inferir 0 ativo e o passivo implicitos. Por
exemplo: se um derivativo prevé que a parte X deve pagar o resultado de A- Ba
parte Y, é porgque o ativo da parte X é B, e 0 passivo da parte X é A. O tamanho do
ativo e do passivo envolvidos é proporciona ao valor nociona do contrato.

N&o compreender que um derivativo possui sSimultaneamente ativo e passivo
€ a principal causa de perdas extremas em transacOes de derivativos. Como muitos
derivativos sdo negociados por valor econdémico inicial nulo, profissionais com
pouca experiéncia acerca do comportamento do ativo subjacente ndo véem
impedimentos para ingressar em posicoes grandes demais (de valor nocional
exagerado). Essas posicOes podem ser extremamente prejudiciais, caso o lado

passivo aflore, levando a um valor econdmico negativo.
2.2.3 Alavancagem
Os resultados (lucros e perdas) que as partes auferem de uma transacdo com

derivativos sdo proporcionais aos valores nocionais envolvidos (ou sga, ao tamanho

da aposta). Porém, a quantidade de dinheiro que é inicialmente cobrada para o



ingresso em uma posicao de derivativos é geralmente bem pequena, comparada ao
valor nocional. No caso de alguns derivativos, como futuros e swaps, a quantia
cobrada pelo ingresso em uma posicdo, ndo fosse a exigéncia de depdsitos de
garantia, seria zero. Isto quer dizer que um agente pode assumir uma pPosicao
bastante grande em relagdo ao seu caixa Por isso, 0s contratos derivativos s&o
instrumentos alavancados. com uma parcela X de caixa 0 agente controla uma
pOSiG&0 muitas vezes maior do que X.

Estar comprado em um mercado subjacente significa que se tem uma relagéo
na qual um aumento de preco do mercado subjacente melhora sua situacéo
econdmica - aumenta a quantia a ser recebida e/ou diminui a quantia a ser paga, ou,
de outra forma, aumenta o ativo e/ou reduz o passivo. Estar vendido em um mercado
subjacente significa que um aumento de prego deste piora a situagdo econdomica.

Para os mercados de titulos de renda fixa ou taxas de juros, os termos
comprado e vendido sdo substituidos pelos termos ativo (aplicado, dado) ou passivo
(captado, tomado). Os termos dado e tomado significam, respectivamente, que se
ingressou em uma relagdo equivalente a fazer um investimento a um determinado
indice (tem-se um ativo corrigido pelo indice), ou que se contraiu uma divida
corrigida por este indice (tem-se um passivo corrigido pelo indice).

Nos mercados derivativos, usam-se 0s termos comprado e vendido para
designar o lado em que se esta no contrato. Se o derivativo for um swap, usa-se
alternativamente dado e tomado. Nota-se porém que nem sempre estar comprado em
um derivativo implica estar comprado no ativo subjacente, pois ha derivativos dos
quais o valor € inversamente correlacionado com a cotagdo do ativo subjacente.

Na vida cotidiana, encontramos muitos exemplos do que é estar comprado em
alguma coisa: compramos carros, agdes, apartamentos, CDBs e cotas de fundos. Mas
raramente temos exemplos do que € estar vendido. Na vida cotidiana, as pessoas néo
ficam vendidas; elas vendem o que tém, e acabou. Essa venda ndo se estende no
tempo. O outro tipo de venda, que origina uma posicéo vendida, chama-se venda
“short”, e € quando se vende o gque ndo se tem. Quando se vende 0 que ndo se tem,
fica claro que essa operagdo possui um resultado, que é a diferenca entre o vaor da
venda e o custo de reposicéo do que foi vendido, e que, enquanto ndo for liquidada,
essa venda constitui uma exigibilidade.



Nos mercados a vista, a venda “short” € possivel através do empréstimo
(aluguel) do bem. Acdes, ouro e varios outros ativos possuem mercados organizados
de auguel. Nos mercados derivativos, a venda “short” dé-se simplesmente por entrar
no contrato como vendedor, ou sgja, do lado que piorara sua situagdo econdmica caso
o vaor do contrato suba. Como serd visto mais adiante, existe uma relacdo entre
estar vendido em um derivativo e as formas de auguel e venda “short” no mercado

subjacente aele.

Preco justo de um derivativo

A expressao “preco justo de um derivativo” (ou “preco tedrico”’) é muito
utilizada. Basta lembrar que uma das defini¢des de derivativo € um contrato ou titulo
do qual o preco depende do preco de outro ativo. Teoricamente existe uma maneira
de determinar arelagéo correta entre o prego de um derivativo e o do seu objeto, uma
vez que ambos estdo amarrados pelas propriedades do contrato. Por essa teoria, todo
derivativo tem um preco justo em func&o do preco do seu objeto (e de outros fatores
de mercado).

Nota-se que, a0 contrério das tentativas de determinacdo do preco justo de
acOes, taxas de cAmbio e commaodities, nas quais 0 preco justo € contraposto ao prego
de mercado na tentativa de descobrir erros de avaliacdo por parte do mercado, o
preco justo de um derivativo é uma fungdo do preco de mercado do seu ativo-objeto.
Dessa forma, o prego justo de um derivativo altera-se conforme o mercado do seu

ativo-objeto e de outros fatores de mercado flutuarem.

Ativo subjacente e fator es subjacentes

Na maioria dos casos, existe apenas um ativo principal a que o derivativo se
refere, 0 que ndo quer dizer que o valor (e o prego) do derivativo dependa
exclusivamente desse ativo principal. Esse ativo principal é por definicdo o objeto do
derivativo. No entanto h& outros fatores subjacentes que influem no valor do
derivativo. Quase todo derivativo é sensivel as taxas de juros no periodo que vai

desde a data atual até o vencimento. Alguns derivativos sdo sensiveis a mudancgas na



taxa de cambio, outros a volatilidade (grau de risco de um mercado) e outros a

correlacdo entre dois mercados.
2.2.4 Organizacao dos M er cados
O grau de organizacdo de um mercado refere-se a facilidade de negociacdo e a
transparéncia de precos.
Do menos organizado para 0 mais organizado, temos 0s seguintes mercados:
1) Mercado balcdo (“over the counter” ou OTC)
2) Mercado balcéo com Master Agreement (ainda OTC)
3) Mercado balcdo organizado (registrado)
4) Mercado de pregdo em bolsa
No Brasil
No Brasil, s sdo permitidas operacdes com derivativos no mercado balcéo
organizado ou no pregdo de bolsas. Contratos particulares sdo de interpretacéo legal
duvidosa
Risco de Crédito
Em derivativos, o risco de crédito de uma parte € o vaor da quantia devida
pela contraparte em virtude da liquidagdo do contrato. Quanto mais favoravel for a

Situacdo de uma parte no gque tange ao risco de mercado (maior for o lucro esperado

na operacao), mais desfavoravel sera sua situacéo quanto ao risco de crédito.



2.2.5 Os Profissionais do M ercado de Derivativos

Os principais profissionais do mercado de derivativos sdo:

1) Operador (“trader”): € o profissional que executa as transacoes.

2) Estruturador: € o profissona que cria (estrutura) operacBes ou produtos

complexos baseados nos contratos disponiveis no mercado.

3) “Book Runner”: é o profissional que maneja a carteira de posicfes em aberto de

derivativos.

4) “Quant”: € um especiaista em métodos mateméticos que modela os precos dos
derivativos, bem como outras propriedades deles (por exemplo: a elasticidade do

preco em relagdo aos fatores subjacentes).

5) Vendedor: No trato com clientes, € o profissional gque vende o conceito do

produto.

6) “Hedger’: quer dizer tanto: @) um “trader” que realiza apenas operagcdes de
protecdo do ativo de uma empresa; ou b) um “book-runner” que tem por objetivo
fazer ou manter uma carteira protegida, ou sgja, neutralizar o0 maximo possivel o
impacto econémico das flutuacbes de mercado sobre as posi¢cbes conjuntas de

derivativos

7) “Market-maker”: é um “trader” que se compromete contratualmente com uma
bolsa (ou outro organizador de mercado) a sempre fornecer possibilidades de
negocios para participantes interessados em um determinado contrato.

2.2.6 Oper acdes com derivativos

Qualquer operacédo com derivativos enquadra-se em um dos 4 casos.



1) OperagBes direcionais. 0s derivativos, por serem alavancados, substituiram os
mercados fisicos subjacentes nas operacdes de operacdes direcionais. Operacoes
direcionais significa que uma parte tomard o risco integral da posi¢do, objetivando

um lucro se 0 mercado subjacente mover-se para o lado que prevé.

2) Operagdes financeiras: tém como Unico objetivo dar ou tomar dinheiro. Os
derivativos sdo usados, pela sua propriedade de liquidagdo futura, para proporcionar

0 resgate do empréstimo.

3) “Hedge’: como os derivativos representam um risco subjacente, o uso de
derivativos em uma posicdo contraria a uma posicéo ja existente no mercado
subjacente tem o efeito de reduzir ou eliminar a exposi¢do a esse mercado. Hedge é o
uso de derivativos para eliminar 0 efeito das flutuacdes indesgjaveis de preco de

ativo objeto que se possui e que é inconveniente desfazer-se.

4) Arbitragem: consiste em tomar posi¢des opostas em derivativos e mercados
subjacentes, de modo a capturar uma distor¢céo de precos que porventura exista. Os
precos dos derivativos sdo relacionados com os pregos dos mercados subjacentes, e
uma quebra nessa correspondéncia significa que ha precos sub ou sobre-valorizados

em um dos lados. O arbitrador visa atirar partido dessas distorcoes.

2.2.7 Tiposde Derivativos

Futuros

Originaram-se das negociacbes a termo de mercadorias, isto €, das
negociacdes onde o preco € definido em data atual, mas a liquidacdo (pagamento e
entrega da mercadoria) ocorre em uma data futura. A familia dos futuros inclui:
futuros e termos. Com o advento da tecnologia de gjustes diarios das bolsas, 0 nome
“futuro” passou a designar apenas esse tipo de derivativo, a0 passo que “termo”
designa operaces feitas para liquidacdo no vencimento. Qualquer que sgja o tipo de

liquidag&o, todos os futuros equivalem a uma exposicao direta ao ativo subjacente.



Futuros sdo negociados por um preco futuro (F), que € 0 preco a que o0 negdcio sera
realizado em data futura. O vaor econdémico de um contrato futuro no vencimento é
S-F, onde S* é o prego do ativo objeto na data de vencimento. Na versdo de
liquidac&o fisica, 0 objeto do contrato € negociado entre as partes no vencimento
pelo prego F. Na versdo de liquidac&o por diferenca, a parte compradora recebe da
vendedora a quantia S*-F na data de vencimento (ou paga, se tal quantia for

negativa).
Opcoes

Originaram-se de direitos de garantia de preco para a negociacdo futura. O
titular da opgéo possui o direito de negociar o ativo objeto por um preco determinado
(preco de exercicio), mas, se desgjar, podera ndo exercer esse direito. A contraparte,
o langador da opcdo, tem a obrigatoriedade de aceitar 0 negdcio, se o titular assim o
quiser. Em compensacao, o titular deve pagar um prémio ao lancador, na data em que
se firma o contrato. Dessa forma, o titular € chamado de comprador da opcéo, e o
lancador de vendedor da opcéo. Existem opgdes tanto de compra quanto de venda.
Na opc¢do de compra, o titular tem o direito de comprar e o lancador tem a obrigacéo
de vender o ativo. Na opcéo de venda, o titular tem o direito de vender, e o langador
tem a obrigagdo de comprar. Portanto, as posicoes elementares de opcdes sdo 4
compradora de opcéo de compra, compradora de opcdo de venda, vendedora de
opcao de compra e vendedora de opgdo de venda. O valor econémico de uma opgao
de compra na data de vencimento é max{O, S- K} ,ondeK € o preco de exercicio da
opcdo. O vaor econdmico de uma opcdo de venda na data de vencimento é
max{S- K,O} . Opcdes de compra também sdo chamadas “calls’ e opgdes de venda

chamadas “puts’.
Swaps
S80 contratos de troca de rentabilidade. Originaram-se de operagdes nas quais

um intermediario assegurava a uma parte juros fixos na correcéo de um investimento

originariamente feito a juros flutuantes, enquanto assegurava a uma segunda parte



juros flutuantes na corregcdo de um investimento originariamente feito a juros fixos
(ou vice-versa). O intermediério trocava o fluxo de caixa de ambas as partes, ficando
com uma remuneracdo tirada do diferencia entre as taxas. Os swaps expandiram-se e
hoje incluem ndo soO taxas de juros como objetos, mas taxas de cambio e indices de
acOes e de pregos. O valor econdmico de um swap genérico é (Il- I 2), onde I1éa
valorizacdo do indice em que se estd ativo, e 12 € avalorizagdo do indice em que se

esta passivo.
Derivativos de crédito

S0 contratos onde partes trocam valores financeiros dependendo de eventos
relacionados ao crédito de uma terceira parte (que ndo é envolvida no contrato a néo

ser como referéncia).

2.2.8 Alguns mer cados futur os especificos

Didaticamente, os mercados futuros sdo divididos quando ao tipo do ativo-
objeto em: futuros sobre commodities, futuros sobre acfes, futuros sobre indices de
acOes e futuros sobre moedas (sem falar em futuros de taxas de juros, que constituem
um capitulo a parte). Esta divisdo é adotada basicamente para diferenciar ativos de
tipos de rendas diferentes. A divisdo entre ativos com e sem renda, e entre renda paga
e capitalizada, € mais geral, e por isso ndo € necessario aqui discutir separadamente
os futuros sobre cada tipo de objeto. Contudo, o mercado futuro sobre indices de

acOes possui uma especificidade além dessa.
i ndices de agBes
Um indice de acles é o valor de uma carteira de agdes tedrica que pretende

representar um determinado setor, um estilo de investimento, ou a totalidade do

mercado acionério. Os indices sdo criados, mantidos e calculados por empresas de



consultoria [ex: Standards& Poors (McGraw-Hill)] ou por bolsas (ex: IBOVESPA),

gue estipulam quais agdes e em quais quantidades estardo presentes no indice.

2.2.9 Futuro de IBOVESPA

E o principal derivativo ligado ao mercado acionério brasileiro. Seu objeto
ndo € um ativo, e sm um indice, que € calculado como o preco de uma cesta de
ativos. Sendo impossivel garantir a entrega fisica de todos os ativos (agfes) que
compdem o indice, o futuro de IBOVESPA ¢é liquidado apenas por diferenca, com
gjustes diarios, sendo a cotacdo para liquidacdo final definida como o valor médio do
IBOVESPA em determinado periodo do pregéo.

Como ndo existe mercado de IBOVESPA avista (o IBOVESPA € um indice
computado com base nos precos de 54 acoes, vide tabela 1.2), a arbitragem basica
entre futuro e “spot” ndo vigora perfeitamente. 1sso ocorre porgque, no Brasil, ndo
existem meios préticos de se executar uma ordem de compra ou venda de 54 acdes
simultaneamente a um preco dado. Logo, o ativo IBOVESPA s0 pode ser obtido por
aproximagao.

Caso o futuro apresente um &gio consideravel em relacdo a sua cotacéo justa,
um arbitrador podera vendé-lo contra a compra de uma carteira de aces que se
aproxime da carteira tedrica do indice. Geralmente, utilizam-se carteiras de até 6
acOes diferentes, tal que concentre 80% do indice. Isto sb é possivel no Brasil, devido
a dta concentracdo do IBOVESPA em certas acdes. (No exterior, os indices
consistem em muito mais agdes, mas a execucao de ordens por computador permite
gue sgjam negociadas muito mais acOes, e simultaneamente). A carteira utilizada
para arbitrar o indice podera eventualmente descolar do IBOVESPA, o que introduz
um risco a operacdo, e faz com que distorcdes entre o futuro e a cotacdo do
IBOVESPA sgjam toleradas.



Cédigo
ACES4
AMBV4
ARCZ6
BBDC4
BRAP4
BBAS3
BRTP3
BRTP4
BRTO4
BRKM5
CLSC6
CMIG3
CMIG4
CESP4
CGAS5
CPLE6
CRTP5
ELET3
ELET6
ELPL4
EMBR3
EMBR4
EBTP3
EBTP4
GGBR4
PTIP4
ITAU4
ITSA4
KLBN4
LIGH3
PLIM4
PETR3
PETR4
SBSP3
CSNA3
CSTB4
CRUZ3
TCSL3
TCSL4
TCOC4
TLCP4
TNEP4
TNLP3
TNLP4
TMARS
TMCP4
TLPP4
TSPP4
TBLE3
TRPL4
USIM5
VCPA4
VALE3
VALES5

QUANTIDADE TEORICA TOTAL

Acao
ACESITA
AMBEV
ARACRUZ
BRADESCO
BRADESPAR
BRASIL
BRASIL T PAR
BRASIL T PAR
BRASIL TELEC
BRASKEM
CELESC
CEMIG
CEMIG
CESP
COMGAS
COPEL
CRT CELULAR
ELETROBRAS
ELETROBRAS
ELETROPAULO
EMBRAER
EMBRAER
EMBRATEL PAR
EMBRATEL PAR
GERDAU
IPIRANGA PET
ITAUBANCO
ITAUSA
KLABIN S/A
LIGHT
NET
PETROBRAS
PETROBRAS
SABESP
SID NACIONAL
SID TUBARAO
SOUZA CRUZ
TELE CL SUL
TELE CL SUL
TELE CTR OES
TELE LEST CL
TELE NORD CL
TELEMAR
TELEMAR
TELEMAR N L
TELEMIG PART
TELESP
TELESP CL PA
TRACTEBEL
TRAN PAULIST
USIMINAS
VCP
VALE R DOCE
VALE R DOCE

Tipo
PN *
PN *
PNB
PN *
PN *
ON *
ON*
PN *
PN *
PNA*
PNB
ON*
PN *
PN *
PNA*
PNB*
PNA*
ON *
PNB*
PN *
ON
PN
ON *

ON *

PN *
ON
PNA

Qtde. Teodrica
86,25235034501
0,40765501584
14,35471351543
67,26444045150
97,56886578055
13,32969063297
3,89586774968
15,28746443902
26,30798383051
1,79706132859
149,39674008072
0,64738526886
13,71233610069
8,31478378337
0,57813994969
32,15288323528
0,23858020975
7,24801794830
20,28479257896
4,11763142423
9,01866416931
26,16570885990
23,02817181817
145,60687243060
5,93362340802
3,54771027842
2,39316452367
73,02445012793
18,00611667192
0,85233682438
538,77098469098
6,23118693776
23,29178177837
1,59557067443
3,31207297858
2,34426595393
4,83250312915
24,39845087104
62,36903410448
45,67879852917
121,41448747793
53,32543693779
5,53407768684
53,73721226382
7,00011705656
50,88750906675
3,99348582938
159,19113376117
5,81664221806
6,87784792764
17,23634088803
0,77034969214
1,96240789932
4,81342863970
2.076,1193297742
9

Tabela 1.2- Empresas participantes do indice BOVESPA

fonte: “site” da BOVESPA

Part. (%)
0,612
1,314
0,589
4,322
0,446
1,414
0,366
1,749
1,962
0,408
0,474
0,107
3,153
0,491
0,391
1,959
0,687
1,580
4,486
0,888
0,654
2,664
0,989
7,635
1,415
0,247
3,028
1,150
0,306
0,207
2,750
2,325
8,159
1,128
2,064
0,872
0,701
0,420
1,277
2,130
0,391
1,146
0,944
11,880
2,144
1,465
0,899
5,953
0,219
0,449
2,140
0,624
1,332
2,896

100,000



Ao tentar reproduzir o IBOVESPA com uma carteira de menor nimero de
acles, estase criando um ativo que possui um comportamento diferente do
IBOVESPA, ainda que fortemente correlacionado. A maioria das agGes mais liquidas
do indice sdo também mais arriscadas, ja que variam mais do que o indice. Para
adequar o risco de uma carteira ao do indice, e assim arbitra-la contra o futuro, é
preciso calcular o beta (b) da carteira (que pode ser feito somando os betas das
acOes multiplicados pelas suas quantidades) e reduzir a carteira nessa proporcéo. O b
€ o coeficiente angular da regresso linear entre os retornos de dois ativos.

Por exemplo: parater-se o equivaente a R$ 2 milhdes de IBOVESPA avista

com umacarteirade b =1,2, é preciso montar uma carteira no valor de 2, 1,2 = 1,7

milhdes.
Aprecamento do IBOVESPA futuro justo

AcOes sdo ativos que admitem dois tipos de renda: dividendos e aluguéis.
Portanto, o IBOVESPA futuro deveria espelhar ambos. A questdo € que o
IBOVESPA j&inclui, em sua metodologia, os dividendos pagos pelas suas agdes. Ou
sgja, um indice IBOVESPA+ 0% ja € um indice igual as agdes acrescidas dos
dividendos obtidos. J& o futuro do indice é o futuro de IBOVESPA e ndo de uma
carteira. Logo, o futuro ndo deve espelhar os dividendos, mas deve espelhar o
alugud das acdes (hoje, em torno de 5%ad). Contudo, raramente o futuro sera cotado

justo, devido aos problemas inerentes a arbitragem, que ja foram detalhados.
Protecdo de uma carteira de agoes

O uso mais comum do futuro de IBOVESPA para protegdo é aquele em que
se tem uma carteira ndo muito correlacionada com o indice. 1sso porque uma carteira
gue sgja espelho do indice geramente é bastante liquida e ndo oferece problemas
para ser negociada caso se desgje sair rapidamente do risco especulativo. Quando se
possui uma carteira pouco liquida ou com papéis estratégicos, recorre-se a protecéo

com futuros de IBOVESPA paratentar eliminar o risco bolsa.



Nesse caso, ha que se lembrar que o risco bolsa embutido na carteira pode ser
na verdade o menor risco e suprimi-lo ndo significara eliminar a probabilidade de
prejuizos. Eliminar o risco bolsa de uma carteira significa apenas desconectar 0s seus
lucros e perdas dos movimentos do IBOVESPA.

O “hedge’ de uma carteira de agOes se faz na propor¢cdo do seu beta. Uma
carteira de acles de valor financeiro R$ 20 milhbes e beta 0,30, por exemplo, é
protegida contra risco bolsa pelo financeiro equivalente a R$ 20 milhdes © 0,30 = R$
6 milhdes em futuros de IBOVESPA Se o futuro de IBOVESPA estiver sendo
negociado a 12.000 pontos, e o vaor do ponto for de R$ 3,00, tal posi¢do equivale a
6.000.000, 12.000, 3 =166 lotes.

“Hedge” deminima variancia

O “hedge’ de uma carteira de acBes com futuros de indices € um “hedge’ de
minima variancia, isto €, seu objetivo é reduzir a variancia dos resultados da carteira
a um vaor minimo. Tudo o que se sabe desse valor minimo, a priori, € que é menor
gue a variancia da carteira sem o “hedge’, e que ocorre para uma certa quantidade de
futuros vendidos. Quantidades tanto menores quanto maiores que a quantidade exata
de “hedge” produzem uma variancia maior do que a minima.

Porém, a minima variancia pode ser, por exemplo, 99% da varidncia da
carteira ndo protegida, isto € mesmo o melhor “hedge” possivel pode ndo melhorar
em mais que 1% a situacdo de risco da carteira. O fator que mensura 0 quanto se
pode reduzir do risco de uma carteira é a sua correlagcdo com o indice: quanto maior a
correlacdo, maior o potencia de redugdo de risco. A formula do percentual de risco

residual que resulta de um “hedge’ de minima variancia &

S final
S

=/1-r? (1)

original

onde s g, € S yigina S0, respectivamente, as volatilidades das carteiras com e sem
“hedge’, e r € a corrdacdo entre a carteira inicia e o indice utilizado para fazer

“hedge’.



Existem outros tipos de “hedge” que ndo o “hedge’ de minima variancia, mas
gue sO podem ser executados se 0 objeto do derivativo coincidir exatamente com o
que estiver sendo protegido: o “hedge” perfeito e 0 “insurance”’ sdo outros dois tipos
de “hedge” (este Ultimo so pode ser realizado com opcdes).

Depois de apresentado o mercado de derivativos e, principal mente, o mercado
futuro de indice BOVESPA (indice utilizado no trabalho) seré realizado logo a seguir

uma breve discussdo sobre temas relacionados a risco de mercado.

2.3 Risco — A Utilizagdo do VaR

A metodologia VaR de mensuragdo de risco de mercado tornou-se padréo da
indUstria. VaR é um nimero gue indica a perda possivel de uma carteira para um
determinado nivel de probabilidade. Por exemplo, se 0 VaR de 1% de um banco é de
USD 60.000.000, é porgue existe uma probabilidade de 1% de suas perdas devidas a
flutuacdo dos mercados superar USD 60.000.000 em um dia. Ou sgja, em 99 entre
100 dias, o resultado do banco serda melhor que uma perda de USD 60.000.000.

O VaR pode ser visto como o desvio-padréo de uma carteira expresso para um
nivel de probabilidade. Assim, é uma medida diretamente decorrente da volatilidade
da carteira e da exposicdo da carteira (medida em valor financeiro). Grosso modo,

pode-se dizer que:

Vak = vol* pos* k 2

onde vol é a volatilidade, pos € a posicao retida em carteira e k é a constante que
gjusta os niveis de confiabilidade e as unidades de medida do VaR da volatilidade e
da exposicéo. Por exemplo, se 0 VaR é diario para um nivel de confiabilidade de 1%,
e avolatilidade é anual, k é igua a 0,15 (2,45 desvios-padrdo divididos pela raiz
gquadrada de 255 dias por ano). Assim, se um banco tem uma posicdo de USD
20.000.000 em um mercado de volatilidade 30% anual, seu VaR de 1% nessa posi¢éo

€ de aproximadamente 0,30~ 20.000.000 ~ 0,15 = USD 900.000.

Existem 3 metodologias de cdculo do VaR:



1) Andliticaa Baseiase no célculo da volatilidade da carteira, conhecendo-se as
volatilidades de cada um de seus componentes e as correlagdes entre 0S seus
retornos.

2) Histérica: Baseia-se em observar os n% piores resultados ocorridos no passado,
assumindo a composicao atual da carteira. Consiste em simular a carteira atual com

0S pregos observados no passado.

3) Simulacdo Monte Carlo: Basdase em rodar simulacBes, conhecendo-se a

volatilidade e correlagdo entre os ativos, sobre o futuro da carteira.
VaR analitico

Se se assumir gue @) os retornos dos ativos em conjunto enquadram-se em
uma distribuicdo normal multivariada (em que cada ativo pode ter correlagdo com
todos os outros), a qual pode ser descrita por uma matriz de covariancias COV (na

qual o elemento cov; =s ;s ;I ;;), € que b) as posi¢des componentes de uma carteira

podem ser descritas por um vetor exposicdo Q em que cada posicéo € representada
por um valor financeiro (supde-se que esse valor financeiro, multiplicado por uma
variacdo de preco do ativo subjacente a ele, fornega o resultado (lucro ou perda) da
posicdo diante de tal variagdo); entdo o VaR de uma carteira a0 grau de
confiabilidade y pode ser calculado analiticamente como:

VAR(y) =-f *(yfeTcoval ©)

ondef '1(y) é funcdo inversa da distribuicdo de probabilidade normal acumulada
associado a probabilidade y.

Por exemplo: calcular o VaR(1%), de um dia, de uma posicdo composta de
R$ 1.000.000 de Telebras, R$ 700.000 de Eletrobrés, vendida em R$ 2.000.000 em
futuros de IBOVESPA e comprada em R$ 10.000.000 de ddlar futuro. As



volatilidades anuais desses ativos sdo respectivamente, 46%, 63%, 32% e 18%. As

correlagbes sdo dadas pela tabela:
Telebras Eletrobras IBOVESA fut Dolar futuro
Telebras 1,00
Eletrobras 0,66 1,00
IBOVESA fut 0,85 0,70 1,00
Délar futuro -0,20 -010 -0,18 1,00

Tabela 1.3 — Correl agbes entre 0s ativos

Elaborado pelo autor
Logo, amatriz de covariancias desses quatro ativos € dada por:

2021 019 013 -002%
$019 040 014 -001:
CoV = i
013 014 010 -0017

é- 0,02 -001 -001 0,035

O “vetor exposi¢ao” &

21.000.000 ¢

¢ 700000 <

~ G- 2,000.0007
glo.ooo.ooo P

e 0 resultado da operacéo [QTCOVQ]'i2 é R$ 1.831.000. Esta seria a oscilacéo da
carteira em um ano para a significancia de um desvio-padr&o. Esse nimero tem que
ser multiplicado por - f ~1(99%) = - 2,32 (que significa que o VaR desgjado é a perda
ocasionada por um movimento de 2.32 desvios-padrdo de magnitude, que,

admitindo-se retornos normais so € ultrapassado em 1% dos casos), e escalonado



para a unidade de medida dia dividindo-se pelaraiz quadrada de 255. O resultado € -
R$ 266.000, que é o VaRde um dia, para a significancia de 1%, da carteira dada.

VaR histérico

No VaR historico, utilizam-se séries de dados passados sobre o0s precos dos
ativos que compdem a carteira. O resultado da carteira de hoje para um periodo
futuro igual a um “holding period” é calculado vérias vezes, considerando-se as
variagdes de prego que ocorreram no passado aplicadas aos precos atuais. O VaR é

igual ao percentil adequado da série de resultados assim cal culados.

Criticasao VaR

Os criticos do VaR atacam a metodologia argumentando que os valores a que
ela chega, utilizando volatilidades e correlacdes historicas, ndo sdo boas indicagdes
das oscilagbes que poderdo ocorrer no futuro. Passada uma época relativamente
calma, por exemplo, o VaR tenderia a reportar um risco menor que o existente pela
frente, e vice-versa; passada uma época muito vol&til, o VaR tenderia a superestimar
o risco futuro. Além disso, em casos de estresse, a estrutura de correlagbes que o
mercado exibe em periodos mais calmos é bruscamente alterada. Em suma: o VaR
ndo serviria para evitar perdas catastroficas, causadas por situacdes de estresse, e
teria a desvantagem de causar um falso conforto dos profissionais em relacéo as suas
posi cOes.

Os impactos de uma situagao de estresse carteira de investimentos podem ser
analisados através de um teste de estresse. Entretanto, este ndo foi plangado para
cobrir o comportamento médio dos mercados financeiros. Logo, percebe-se que o
VaR de uma carteira de investimentos ndo elimina as deficiéncias de um teste de
estresse, nem os procedimentos do Ultimo suprem as fraquezas do primeiro.

Uma tentativa de contornar tal situacdo € a utilizaco da Teoria dos Vaores
Extremos na andlise de risco. A Teria dos Vaores Extremos trabalha, como o proprio

nome sugere, com a distribuicdo apenas dos valores extremos de uma amostra, ou



sgja apenas trabalha com os dados pertencentes as caudas da distribuicdo da amostra.
Deste modo, consegue-se entender o comportamento médio dos valores extremos
gue, certamente sdo oriundos de periodos de grande estresse no mercado. Na

proxima secdo é feita a apresentacéo da Teoria dos Valores Extremos.
2.4 Teoriados Valores Extremos

2.4.1 Introducéo

O uso da Teoria dos Valores Extremos (‘Extreme-Vaue Theory”) permite
estimar probabilidades e quantis com razodvel precisdo nos limites dos valores
encontrados dentro da amostra, e mesmo aém deles. A explicita modelagem dos
valores extremos corresponde a um gjuste apenas da cauda da distribuicdo dos dados
originais, ressaltando o cardter pouco informativo que pode ter o interior da

distribuicdo para ocorréncias de baixissima fregiiéncia
2.4.2 Desenvolvimento Tedrico

Mesmo ndo sendo crucia para o desenvolvimento do trabalho, o autor acha
necessario a apresentacdo realizada nesta se¢do, pois destaca como resultado central
0 Teorema de Fisher-Tippett, que especifica a forma da distribuicdo limite para

maximos/minimos valores centrados e normalizados.

Sga X, X,,..., X, uma amostra de varidveis aeatorias ndo degeneradas,
independentes e identicamente distribuidas (Bilingsley(1986)) com funcdo de
distribuicdo acumulada comum F, . Defina Y, € Z, como 0 maximo e 0 minimo

amostral, respectivamente.

Y, = Max(X,, X,,..., X, ) @

Z, = Min(X,, X5,...,X,) @)



Por convencéo costuma-se apresentar a EVT (“Extreme-Value Theory”) para
0 caso dos maximos. Contudo, todo resultado obtido para 0 maximo também vale

para 0 minimo, bastando lembrar que:

Max(X,,X,,...,X,)=-Min(X,,X,,...,X,) (6)
A funcdo de distribuic¢do acumulada do maximo amostral Y, pode ser obtida

da seguinte forma:

PriY, £x}=Pr{X, £x, X, £X,...X, £x} = (5 Pi{x, £xt=(F,(x))". (7

i=1

Sga ¢, =Sup{x1 A:F (x)<1} o limite superior de F,. Ento, para todo
x<c, temse que Pr{Y, £x=(F(x)'®0 quando n® ¥.
Mais ainda, se c.<¥, paa todo X3 c., Pr{Yn £x}:(FX(x))n =1
Segue que, como Y, ® c. quase certamente quando n® ¥, a distribuicéo limite
exatade Y, édegenerada (Embrechts et al.(1997)), o que ndo traz muitos ganhos em
termos préticos.

Felizmente, para algumas distribuicdes Fx existe um resultado similar ao
Teorema Centra do Limite (Billingsey(1986) que fornece resultados de
convergéncia fraca para maximos centrados e normalizados. O Teorema de Fisher-
Tipett.

As distribuigdes dos valores extremos sd0 obtidas como distribuigdes limites

dos maximos de variaveis deatérias. Para tal, considera-se 0 maximo centrado e

Yn_rnn
S

normalizado ,onde s ,>0e m1 A sio constantes que dependem do

n

Yn_rnn
S

tamanho da amostra n. Para obter a distribuicdo limite de , Fy , tem-se que

n

calcular probabilidades da seguinte forma:



M _ i .
lim Prl Yoo M £ xg quando n® ¥, que podem sSer reescritas cOmMoO
T Sn

lim Pr{Y, £u,} quando n® ¥, onde u, =u, (x)=s ,x+m,.

Tipicamente, Fy deve satisfazer a certas condigdes emc - e sua cauda direita
para assegurar que lim Pr{Yn £ un} guando n® ¥ existe para uma constante
apropriada u,(x) (Embrechts et al. (1997), Gumbel(1958)). Por exemplo, a
distribuicdo limite do méximo de qualquer distribuicdo Fx com um sato no limite
superior finito é degenerada.

Segundo o Teorema de Fisher-Tippett (Fisher and Tippet(1928)), se existe tal
distribuicdo néo degenerada Fy, esta deve ser necessariamente um dos trés tipos de

distribuicdes de valores extremos padronizadas a seguir:
1. Distribuicgo de Gumbel, definida como

F, (y) = exp{- exp{- y}} para y1 A ©)

2. Distribuicdo de Fréchet(k), definida como

F,(y;k)=0 % y<0,
F,(yik)=ept v} seyso, (10)
onde k >0.

3. Distribuicdo de Weibull(k), definida como

F(vik)=eol (- v)*}  sy<o,
F,(y;k)=1 sey3 0, (11)

onde k <0.



A questéo agora é para quais constantes m,e s ,,, e distribuicdes F, ocorre a

convergéncia

. 1Y -mU
jim Pri——hg=F . (12)
n® ¥ T Sn g

Para responder a pergunta acima € introduzido o conceito de Dominio
Maximo de Atracdo (MDA — Maximum Domain of Attraction). Diz-se que a
distribuicio de uma variavel deatéria pertence a0 MDA de uma das trés
distribuigdes de valores extremos ((9),(10) e (11)), se existem constantes m 1 A e

Yn-rq']
S

s, >0,ta que

Wi® F,.

Gnedenko (1943) estabeleceu condigBes necessarias e suficientes para Y,
pertencer a0 MDA de um dos trés tipos de distribuic¢des limites.

Primeiramente, definiu-se a fungéo inversa distribui¢éo acumulada F, como:
F*(p)=inf{xT A:F 3 p}0< p<Ll (13)
Usando esta notagdo o p-quantil de F, é definido como

x, =F*(p)o<p<1. (14)

De acordo com Gnedenko, a convergéncia em (12) é assegurada se Fy

satisfizer as seguintes condigoes:

1) Paradistribuicdo Gumbsel,

lim nfL- F s x+m)]=e," xT A, (15)

onde s, >0.



Algumas distribuicbes satisfazem esta condicdo, tais como: normal,
lognormal, exponencial, gama e logistica. Uma possivel escolha para as constantes
normalizedorasé m, =afs ,) es , = F, "&- 19 onde a(¥ é uma fungéo positiva e

e nNg
absolutamente continua (Embrechts et al. (1997)).
2) Paraadistribuicdo Fréchet,

i - F, (tx)
w¥ 1- F (t)

onde k>0,t > 0.

"
P
P
\%

o

(16)

A condicdo acima é satisfeita pelas distribui¢cbes Cauchy, t-Student, Pareto,

Burr e loggama. As constantes podem ser escolhidas como m, =0 e
B 1-.

s, =F 8- =2
e Ng

3) Paraadistribuicdo Weibull

im 1 F,(tx+c,)
©¥ 1. F (x+c)

=t *,"t>0, (17)

0u Sgja, se varia regularmente no infinito.
A condicdo acima é satisfeita pelas distribuicbes beta e uniforme. As

. : 1..
constantes podem ser escolhidascomo m, =c. es,=c; - F, 15- -9
e nNg

2.4.3 Gumbel, Fréchet e Weibull: As Trés Distribuicbes de Valores Extremos

As funcdes de distribuicéo padrdo de valores extremos s&o, novamente:

Gumbel: F,(y) =exp{- exp{- y}} para yT A. (18)



i
Fréchet (k): F (y;k)={ "k>0, 19
rechet (9: B (Vik)= g0t 4} ya0, (19)
3 -k
Weibull (): Fy(y;k):ie(p{- (1 Y } z:g’ k<0, (20)
| ’ :

E as respectivas fungbes densidade de probabilidade de valores extremos

padroni zadas séo:

Gumbel: f,(y)=exp{- ylep{- epf{- y}} para yi A. (21)
) i 0, y£0,

: K)=1 22

Fréchet (k): f,(y;k) Ly lepl y*) yso k>0, (22)

. _ 1- k(- y)""lexp{- (- y)'k}, y <0,
Welbull (k): ‘k)=1i k<0
eibull (k) fy(y,k) % 0 y3 0. <

: (23)

A figura 2.1 mostra as densidades das trés distribuigcdes de valores extremos
padronizadas. a distribuicdo Gumbel, a distribuicdo Fréchet com k=2 e a
distribuicdo Weibull comk =- 2.



Weibull --------- Frechet

1,0 1
0,9 1
0,8 1
0,7 1
0,6 1
0,5 1
0,4 1
0,3 1
0,2 1

Funcéo de densidade de probabilidade

0,1 1

0,0

Figura 2.1-Distribui¢des de Probabilidade: Fréchet, Gumbel e Weibull
Elaborado pelo autor

E importante notar que, conforme ilustrado na figura 2.1, a distribuicio
Fréchet € limitada inferiormente, a distribuicdo Weibull € limitada superiormente,
enquanto a distribuicdo Gumbel € ilimitada em ambos os sentidos.

O pardmetro de forma k est4 relacionado com a densidade da cauda da
distribuicdo F, (Jenkinson(1955)). Os valores extremos constituem, dadas algumas
condi¢des as caudas direita e esquerda da distribuicdo F,, entretanto eles seguem as
distribuicbes F, apresentadas anteriormente. Tipicamente, sempre que as caudas de
F, decaem exponencialmente, F, corresponde a distribuicdo Gumbel. Além disto,
sempre que o suporte da distribuicdo F, é limitado a direita, F, pertence a classe

das distribuigdes Weibull(k). Em ambos os casos todos os momentos de F, sdo

finitos. Finalmente, sempre que F, tem caudas pesadase c. =¥, F, pertence a
classe das distribuicbes Fréchet, e o parametro k corresponde a ordem maxima dos
momentos finitos de F,. Por exemplo se F, é uma t-Student com 4 graus de
liberdade, F, corresponde a uma Fréchet. Neste caso a assimetria esta bem definida,

mas a curtose ndo. Os resultados permanecem validos para processos estaci onarios.



Nas figuras 2.2 e 2.3 observa-se o formato das distribuigdes de densidade de
probabilidade dado diversos valores de k para a distribuicdo Weibull e para a
distribuicéo Fréchet respectivamente.



Weibull (-0,25) Weibull (:0,5)
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Figura 2.2-Fungbes Densidades de Probabilidades Weibull Padréo para k=-0,25, k=-
0,5, k=-1,0, k=-1,5, k=-2,0, k=-3,0, k=-4,0 e k=-5,0
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Figura 2.3-Fun¢tes Densidades de Probabilidades Fréchet Padrdo para k=0,25,
k=0,5, k=1,0, k=1,5, k=2,0, k=3,0, k=4,0 e k=5,0

Elaborado pelo autor



Pode-se observar nas figuras 2.2 e 2.3 que quanto menor o valor absoluto de
k, mais pesada é a cauda da funcéo densidade de probabilidade. Outra observacéo
relevante é a forma similar a uma fungéo densidade de probabilidade norma que a

funcdo de densidade de probabilidade padrdo Weibull adquire para |k|=3. Mais
precisamente (Johnsons et al. 1994))., para |k|=3,6 a funcdo densidade de
probabilidade Weibull apresenta assimetria 0,00 e curtose 2,72, ou sgja, apresenta

mesma assimetria que a funcéo densidade de probabilidade normal padréo e curtose
9,33% menor, 0 que caracteriza a extrema similaridade entre os formatos das
mesmas.

O MDA da distribuicdo Gumbel abrange as distribuicbes com caudas
variando de moderadamente pesadas a leves, como as distribuicdes normal,
lognormal, exponencial, e gama, ja mencionadas anteriormente. Aqui, C. <¥ ou
Cr=¥.

O MDA da distribuicio Weibull compreende fungdes de distribuicéo
acumulada com suporte limitado a direita (c . <¥ ), como as distribuicdes beta e
uniforme. Portanto, ndo deve ser a melhor escolha para modelar eventos extremos
em finangas.

No caso do MDA da distribuicdo de Fréchet as distribuicdes possuem caudas
pesadas, como a distribui¢cdo Cauchy, t-Student, Pareto, Burr e loggama. Portanto,
este tipo de distribuicéo deve ser a mais apropriada para séries de retornos do indice
BOVESPA.

Embora para fins de modelagem estatistica as trés distribuicdes de valores
extremos sgjam bem digtintas, do ponto de vista matematico elas estéo intimamente
ligadas. A titulo de ilustragdo apresenta-se a relagdo entre as distribui¢des de valores

extremos obtida para umavariavel aleatéria Y>O0:

SeY~Fréchet U InY~Gumbel U - Y '~Weibull (24)



2.4.4 A Distribuicdo GEV Padrao(Generalized Extreme Value)

Jenkinson(1955) propds uma expressao Unica para representar os trés tipos de
distribuicdes de valores extremos. a distribuicdo GEV (Generalized Extreme Value),

cuja funcéo densidade de probabilidade acumulada é expressa por:

" lepl- @)} x10
ik )_} ep{- exp{- y}} x=0 )

onde 1+xy >0. Em (25) o indice de cauda, x , €tal que x :% (vga(10) e (12)).

A distribuicdo Gumbel refere-se a x =0; a distribuicdo Fréchet quando

x >0, eadistribuicdo Weibull com x <0.
2.4.5 A Distribuicdo GEV Né&o-Padronizada

A distribuicdo GEV definida em (26) esta padronizada, ou sga, € definida
para valores normalizados pelas constantes normalizadoras m), e s,,. Como, estas

constantes sd0 desconhecidas, pode-se definir a GEV ndo padréo, ou sgja, a GEV

com trés parametros, cuja funcéo densidade de probabilidade acumulada €:

, (26)

X
onde 1+x

>0. O parametro x € conhecido como parametro de forma, n

como parametro de deslocamento e S  como parametro de escala.
A funcdo densidade de probabilidade GEV néo padronizada é dada por:



|
I bt exp&- 1+ x hd x10
i s s +

o, (xx,ms)=| s g€ o @)

| 1 @ x-mH_ & & X- mip X =0
i —expc Texpg- expe- =
i S e e S oy

onde 1+x X" 5 0.

s

A distribuicdo GEV serd utilizada para caracterizar as caudas da distribuicdo
do indice BOVESPA. Logo, para que isto sgja possivel € necessario estimar os trés

parémetros caracterizadores da distribui¢céo GEV para o caso particular em estudo.

2.5 Estimacao de Par ametros

Neste trabalho € utilizado o0 método de maxima verossimilhanca para estimar
0 parametro de forma x , o parametro de locacdo r , e 0 parametro de escala s da
distribuicdo GEV.

O método de estimacdo por maxima verossimilhanga (“Maximum Likelihood
Estimation”-MLE) é um dos muitos métodos existentes usados para estimacdo de
parametros. Existem outros métodos como: minimos quadrados ordinarios, minimos
quadrados generalizados, minimos quadrados com balanceamento iterativo e o
método dos momentos, também conhecido como método dos L-momentos.

O método de méxima verossimilhanca foi escolhido dentre os citados pois

apresenta propriedades assintoticas interessantes (Jorgensen,1983), tais como:

Os estimadores de maxima verossmilhanca sdo assintoticamente

normal mente distribuidos.

Os estimadores de maxima verossimilhangca apresentam assintoticamente

minima variancia.



Os edtimadores de méxima verossmilhanca sdo assintoticamente nado
viesados.

TransformacOes lineares dos estimadores de maxima verossimilhanca

também sdo estimadores de maxima verossimilhanga

O método de estimagao de parédmetros por maxima verossimilhanca é baseado
em uma densa teoria, originalmente desenvolvida por R. A. Fischer. O método &
explicado a seguir.

Dada uma amostra aeatoria vy,,y, ...,Y,, de valores independentes que
seguem uma distribuicdo f(yl,yz,...yn|q) governada por um parametro

desconhecido, no caso . A probabilidade de obter tal amostra de valores dado um

valor de q € dada pela funcdo verossimilhancga, expressa a seguir:
A
L=0 f(yla ) (28)
i=1

Como g é usuamente desconhecido, tem-se que estimé&lo através da
amostra. Como estimativade q escolhe-se o valor q , 0 qual maximiza a expressio
de verossimilhanca da amostra. Este processo de encontrar valores estimados para
pardmetros desconhecidos € chamado de estimacdo de maxima verossimilhanca.
Estimadores obtidos desta maneira sdo conhecidas estimadores de maxima
verossimilhanga

O principal objetivo da estimagdo de maxima verossimilhanga é encontrar
valores de parametros que maximizem a verossimilhanca da amostra, L, a qual pode
ser vista como sendo a distribuicéo de probabilidade conjunta da amostra. A funcgéo
de verossimilhanca proporciona um valor que é proporcional a densidade conjunta de
obter tais valores observados. Assumindo observagdes independentes, 0s
componentes individuais da funcdo de verossimilhanca podem ser multiplicados
seguindo a regra geral da distribuicdo conjunta de probabilidades de eventos

independentes.



Muitas vezes, achar o méximo de funcdo ndo é uma tarefa facil sendo
necessario a aplicacdo do logaritmo na funcdo. Como a aplicacdo do logaritmo é
uma transformagao estritamente monotonica, o conjunto de valores que maximiza L

também maximizalog L, neste caso:

log L =4 log f(yfa) (29)

i=1

No caso, que envolve somente um parametro, 0 maximo € alcangado quando

avariacdo delog L em relacdo q torna-se zero. Esta € a condicdo de primeira ordem.

Matematicamente, esta condicdo € expressa como:

1“{—'3" =0 (30)

A solucdo desta equacdo é estimador de maxima verossimilhanca que sera

denotada por q .
Para assegurar que log L € maximizado quando resolvido para ¢, a tangente
de logL tem que tender a zero nas proximidades da estimativa de maxima

verossimilhanca. Esta é a condi¢do de segunda ordem, dada pela expressao abaixo:

log L
Ta?

<0 (31)

A figura 2.4 abaixo descreve os principios da estimagdo de maxima

verossimilhanga para um anico parametro, q .
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Figura 2.4— Maximizacdo delog L em relacéo a ?
Elaborado pelo autor

Pode-se generalizar o método de estimagdo de maxima verossimilhanca para
0 caso em que had mais de um parametro desconhecido, ou sga quando

2=(9,,9,,...,0¢ ) € um vetor K x 1 de pardmetros que descreve a fungo densidade

de probabilidade.
Neste caso é necessario encontrar o vetor das derivadas parciais de log Lem

rdlacéoa ?,

_flogL(?)
u(?)= B (32

Sendo u, aderivadaparcial de loc Lem relagdo a g, , tem —se:

TlogLl(®?)  (k=1..,K) (33)

fa,

k

O préximo passo € igudar cada uma destas equacOes a zero e resolver para

q,,0usga,

Mlogl(?)_y  (k=1..,K) (34)

[

k



Tem-se aqui um sistema de equagBes com K equagdes e K incgnitas. U(?) é
o vetor K x 1 das primeiras derivadas chamado de funcéo “score” (ou vetor “score’)
eu,, paak= (12,..., K) , S30 0s elementos do vetor “score”.

Para se ter certeza que as condicfes de primeira ordem representam maximos

, € necess&rio que a segunda derivada de loc Lem relacdo ? sga uma matriz

negativa, ou sgja

H(?):% <0 (35)

Sendo h, asegundaderivadade log Lemrelagdo a g, e q,, entdo:

h =T gL?) g (k=1...K) (I=1...K) 36)
fla,Tq,
Muitas vezes a solugdo do sistema de equagbes u, :1“01?—L(?) =0,onde
A

(k =1,...,K), ndo é trivial, dada a dificul dade ou mesmo impossibilidade de se isolar

0s termosq, . Quando isto ocorre é necessario recorrer a processos NUMEricos
iterativos.
Por processos iterativos (Humes et al.(1984)) entende-se um processo que

calcula uma seqiiéncia de aproximagdes x,, X, ..., X, da solucéo desgjada. O célculo

de uma nova aproximacdo € feito utilizando aproximacdes anteriores. Devem ser
fornecidas as aproximagdes iniciais que 0 processo exigir. Existem varios méodos
iterativos, como 0 método da dicotomia ou bissec¢cdo, o método das substituicdes ou
aproximagdes sucessivas e o método de Newton-Raphson ou das Tangentes.

No estudo em questéo utilizou-se 0 método de Newton-Raphson.

Neste caso, partindo-se das estimativas iniciais, as estimativas dos parametros
s80 sucessivamente recalculadas. Este processo iterativo termina quando as

diferencas entre as estimativas da nova iteracdo e as estimativas da iteracdo anterior



sejam insignificantes, ou atinjam valores pré-estabelecidos. Sendo ? as estimativas

nat-ésima iteragdo, as estimativas sdo obtidas como segue:
20 =59 4[| (260 T u(2t9). 37)

onde 1(?)=- H(?).
A matriz de varidncia-covariancia assintética das estimativas € o inverso da
matriz de informacéo, [I (’?)]'l,obtida através da Ultima iteracdo realizada. Os

estimadores de méxima verossimilhanca, ? , sd0 normalmente distribuidas, com

matriz de varidncia-covariancia iguais aos elementos do inverso da matriz de

?

Diag\/..l ()

assintética, ou z-distribuicdo. Este fato é relevante na conducdo de testes de

infformacédo. O valor segue uma distribuicdo normal padréo

significancia nos parametros individuais (como a matriz de variancia-covariancia de
? é construida a partir de quantidades estimadas, utiliza-se t-teste).

Novamente, a matriz de informagéo 1(?) é o oposto damatriz K x K formada

pelos elementos hy

, sendo que em aguns casos, € possivel obter esta matriz
diretamente. Em outros uma aproximacgao razoavel de - H(’?) pode ser obtida. Uma
aproximagdo pode ser o produto direto do vetor gradiente (ou fungdes “score’
individuais).

Se log L, éacontribuigéo do i-ésimo individuo para a log-verossimilhanca da
amostra em estudo, a matriz n x K das primeiras derivadas (ou funcbes “score’
individuais) € chamada de vetor gradiente g(?). A matriz de informagdo estimada

pode ser obtida entéo através do seguinte produto cruzado:

1(2)=9(?)'a(?) (39)

A raiz quadrada da diagonal da inversa da matriz de informagdo prové os

1

erros padréo das estimativas de maxima verossimilhanca. Ou sgja, | (7) € amatriz



A

assintética de variancia-covariancia de ?. Os elementos da diagonal desta séo
var(:?). Como as edtimativas de maxima verossimilhanca sdo assintoticamente

normalmente distribuidas, esta informacdo também pode ser usada para construir

interval os de confianga ao redor de ?.
2.6 Aplicacéo da Estimacédo de Par ametros

Assumindo que os valores extremos dos retornos diarios do indice
BOVESPA seguem uma distribuicdo GEV, € necess&rio estimar 0s parametros
X,m,s .

No caso em estudo a funcéo de verossimilhanca € dada por :

L(x;x,mS)=6 f(xx,ms ) x-m

i §1+x

(39)

onde | (>) é afuncdo indicadora. Logo, a funcéo de log-verossimilhanca é dada por

A
log L(xx,ms ) =log O fx(xi:x,mS)lgl womy (40)

a qual necessita ser maximizada em relagdo a ’?:(x,ms) para se chegar a
estimativa ?.

Fazendo algumas simplificacoes,

-én +x 2 = (41)



Logo, maximizando

S1/x-1 A -1/x

&lo, s -mg 9 ¢ - Mo -
nlog¢==+§ Iog%ﬁx X - Mo T a+x %" MY  egamos maximizando
eS g i S 9 g il S g

log L(x;x, ms ) como descrito na teoria anteriormente.

De acordo com a teoria exposta, precisa-se calcular o vetor score e a matriz
hessiana.
O vetor score é o0 vetor 3 x 1 das primeiras derivadas de

L1/x-1 1/ x

. 6' - 0 g . L
og 0+ J1og@ex X0 % 4B an i a
eS g i1 S 4] [} i=1€ S a

?2=(x,ms ), ousga,

=
8
S

-

1
éCDM'D
8=
—

(42)
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Abaixo encontram-se os trés termos desenvolvidos que compdem o vetor

score, onde:
(gm0 g oo i
flogL :é Xg+é e S g
X i=1 €[+(Xi- m)X_OS i=1 x?
e S g (43)
e (x - mx 56
gm oot Gem
i-18 S [ ¢ Xg[_l_(xi'm)xgs X :
g e S g P



.
X |-

dae 10 g (x - mxs*
-1- —= + -
TlogL _ elg Xg ia-l? S a (44)
R s
e S (4]

3 g ( 0
- mlg- 1- —=x X- +- +
flogL _Iogn_g()g )g X@_ial( m)gi S [ (45)
1s s 2 a+(x,-m)xO2 s’
e S %)

A matriz hessiana é uma matriz simétrica 3 x 3 composta das segundas

1/x

. n R o o e
derivadas  de nloggelg+é Iog%+x ATRLLLY S - § - 0 gamiLLe em
es S @ g i a

g =

relagio ? = (x,ms ),ou sgja:

é’logL  f°logL  T*logLu
g‘ﬂx‘ﬂx xXm x9s H
b= €M%logl  Tlogl  f*loglL
g‘ﬂnﬂx fmMfim  qinfs 3
&l%logL  T%logL  flogLy
g TsTx IsIm  9s¥s ¢

(46)

onde:
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O processo numérico iterativo de Newton-Raphson, foi realizado no

programa Matlab versdo 6.5, através do pacote EVIM. O EVIM é o médulo de

andlise de valores extremos do Matlab. Os valores das estimativas encontradas sdo

apresentados e analisados a seguir na se¢do 3.5 do capitulo 3.



CAPITULO 3—-AVALIACAO DOSPARAMETROS

3.1 Introducéo

A primeira parte deste capitul o apresentard a amostra completa de dados.

Em seguida, sera realizada uma andlise exploratoria dos dados da amostra
utilizada. Durante a andlise exploratéria dos dados, sera utilizada a estatistica
descritiva com o intuito de prover informagdes que auxiliem na caracterizagcéo da
distribuicdo dos dados da amostra. Alguns testes e ferramentas estatisticos seréo
também utilizados nesta fase.

Em seguida, serdo redizados testes e andlises de ferramentas Utels na
aprovacao estatistica da estimacao dos parametros realizada no capitulo anterior.

Durante a confeccdo do capitulo, as ferramentas serdo descritas
simultaneamente a sua aplicacéo.

A construcdo das ferramentas estatisticas e a condugdo dos testes estatisticos
foram redlizadas através do pacote computacional Matlab versdo 6.5, desenvolvido
pela Math Works Inc.. Utilizou-se também o Microsoft Excel para a formatacgo dos

dados e para a realizagéo de céalcul os de menor complexidade.

3.2 A Amostra Escolhida

3.2.1 Amostra Inicial

A amostra de dados escolhida foi a série temporal diaria dos precos do futuro
do indice BOVESPA. O periodo de tempo escolhido foi de janeiro de 1994 até julho
de 2003, totalizando 2375 dados sucessivos gque sdo considerados os dados-base.

O trabalho visou estudar a distribuicdo dos log-retornos do indice BOVESPA,

logo construiu-se a série dos mesmos da seguinte forma:

2bov,,, &

: 53
Ibov, 3)

R =1In



ondet € um indice de posi¢éo temporal, Ibov, € o t-ésmo valor do prego do indice

BOVESPA e R éo valor do t-ésimo log-retorno calculado.

A série dos log-retornos diarios construida contém um total de 2374 dados. A
série dos precos do IBOVESPA pode ser conseguida no “site” oficial da Bolsa de
Valores de Sdo Paulo.

3.2.2 Amostrade M inimos e M &ximos

Outras duas séries foram construidas para a realizagdo do trabalho. As séries
s80 chamadas de minimos mensais e maximos mensais.

Para a selecdo destas amostras foi utilizado um método de identificacdo de
valores extremos de séries completas. O método € conhecido como bloco maximo
(“block maxima’) e consiste simplesmente na separagdo dos maximos valores
absolutos de cada bloco. O bloco é uma divisdo da série completa, podendo ter 21
observagOes (mensal), 63 observagOes (trimestral), 126 observagtes (semestral) ou
252 observagbes (anual). No estudo, 0os méximos mensais sdo valores maximos de
cada bloco mensal, totalizando 114 observacdes. Para 0s minimos segue-se a mesma
metodologia, totalizando 113 observagdes. As séries de minimos e maximos foram
cada uma dividida em duas, sendo uma série de dados base e outra série de teste. Os

passos do método de divisdo sdo enumerados abaixo:

1. ordenar tempora mente a série completa de maximos/minimos;

2. gerar deatoriamente com eqiiprobabilidade os nimeros 0 e 1 para cada valor

da série;

3. se for 0 aguele valor da série sera congdtituinte da amostra base de
maximos/minimos;

4. se for 1 aguele valor da sé&rie serd congtituinte da amostra de teste de

maximos/minimos ;



As séries base de méximos e minimos serdo também chamadas apenas de
mMinimos e Mmaximos mensais e Seréo as series que serdo utilizadas na estimacdo dos
parametros da distribuicdo que seguem.

Ja as séries teste de minimos (50 dados) e maximos (58 dados) seréo
utilizadas apenas no capitulo 5 para comparar de informacfes geradas no capitulo 4
através das séries base.

Entretanto, para a andlise exploratéria serdo utilizadas as séries de maximos e
minimos compl etas, ou seja, compostas das séries base e das séries teste.

As séries utilizadas no estudo podem ser visualizadas no Apéndice A.

3.3 Andlise Exploratoria dos Dados

Antes de andisar as estimativas dos par@metros conseguidos, serd redizada
uma andlise exploratoria dos dados em estudo.

3.3.1 Estatisticas Descritivas

A tabela 3.1 mostra algumeas estatisticas para os log-retornos diarios do indice
BOVESPA. Estas estatisticas sugerem uma distribuicdo incondicional com caudas

densas e ligeiramente assimétricas, indicando afastamento da distribuigdo normal.

Minimo 1% Quantil  25% Quantil Mediana 75% Quantil  99% Quantil Maximo

-17.226 -7.505 -1.263 0.145 1.588 8.046 28.825

Tabela 3.1- Estatisticas descritivas dos log-retornos diarios do indice Bovespa (%)

Elaborado pelo autor

A assimetria da amostra dos log-retornos diérios do indice BOVESPA ¢é 0.58
e a curtose é 12.40, o que caracteriza uma distribuicdo assimétrica para direita e
leptocurtica. Estas caracteristicas podem ser confirmadas na figura 3.1. Nota-se que
ha ocorréncia de valores extremos tanto na cauda esquerda quanto na cauda direita.
Entretanto, a cauda direita mostra-se visualmente mais densa, 0 que vem ao encontro

das estatisticas descritivas expostas.



Quanto mais aongada verticamente for a distribuicdo de densidade de
probabilidade maior a sua curtose. Medidas de curtose acima de 3 indicam uma
distribuicdo leptocurtica e valores abaixo de 3 indicam uma distribui¢do mesocurtica.
Ja em relacdo a medida de assimetria, se seu valor for maior que zero a assimetria da
distribuicdo é direita, caso contr&rio € classificada como assimetria esguerda. O
célculo da assimetria (A) e da curtose (K) serd mostrado logo a seguir na subsecdo
3.3.4.

Histograma

Frequéncia

Figura 3.1-Histograma da série de log-retornos do indice BOVESPA
Elaborado pelo autor

A figura 3.2 mostra a s&ie de log-retornos do indice BOVESPA
temporalmente ordenada. Pode-se constatar algumas caracteristicas como por
exemplo a existéncia de agrupamentos de volatilidade, isto €, retornos grandes (em
valor absoluto), so mais provavelmente seguidos de retornos grandes (em valor
absoluto) e retornos pequenos (em valor absoluto) sdo mais provavel mente seguidos
de retornos pequenos (em vaor absoluto). Isto caracteriza periodos de alta/lbaixa
volatilidade. Em termos estatisticos, isto significa que o model o é heterocedéstico.

Outra observacdo € o retorno a média da série, indicando, em média, a

natureza estacionaria da série de log-retornos. Observam-se também valores



extremos na série indicando a existéncia de caudas densas na distribuicdo

incondicional dos log-retornos.
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Figura 3.2 —L og-retornos diérios (%) do indice BOVESPA.
Elaborado pelo autor

As figuras 3.3 e 3.4 mostram 0s log-retornos minimos € maximos do
IBOVESPA selecionados mensalmente. A selecdo ocorreu através do método de
bloco maximo definido na subsegdo 3.2.2.
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Figura 3.3 -Minimos mensais (%) do indice BOVESPA
Elaborado pelo autor
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Figura 3.4 -Méximos mensais (%) do indice BOVESPA
Elaborado pelo autor



A tabela 3.2 mostra algumas estatisticas para 0s méximos e minimos mensais
dos log-retornos didrios do indice BOVESPA. As edatisticas sugerem uma
distribuicdo assimétrica para a esquerda para 0s minimos, e assimétrica para a direita
para 0s maximos. O valor de assimetria calculado para a série dos minimos € igual a
-1.90 e para a série dos méximos éigual a 3.68.

Estas informagdes podem ser observadas nas figuras 3.5 e 3.6 que mostram os
histogramas para 0s valores maximos mensais e para os valores dos minimos
mensais, onde também pode se checar a leptocurtose das duas séries. A série de
minimos apresenta valor de curtose igual a 7.22 e a série de maximos apresenta
valor de curtose igual a 20.51.

Minimo 1° Quartil Mediana 3° Quartil Maximo
Minimos
. -17.226 -5.247 -3.637 -2.770 -1.264
Mensais
Maximos
. 1.699 2.883 3.923 5.289 28.825
Mensais

Tabela 3.2 — Estatisticas descritivas dos minimos e maximos mensais dos retornos
diérios do indice BOVESPA (%)

Elaborado pelo autor
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Figura 3.5-Histograma da série de maximos mensais do indice BOVESPA

Elaborado pelo autor

Histograma - Maximos Mensais
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Figura 3.6-Histograma da série de maximos mensais do indice BOVESPA

Elaborado pelo autor




Continuando a andlise exploratéria dos dados foi utilizada uma outra
ferramenta grafica bastante Util, denominada funcdo média dos excessos, para a

avaliagcdo da densidade das caudas de distribuicdes.
3.3.2 Funcdo Média e Funcdo M ediana dos Excessos

A funcdo da média dos excessos de uma varidvel deatoria X, denotada e(u),

€ definida da seguinte forma:
e(u):E[X-u|X>u],O£u£cF. (54)

Para varidvels aleatérias cuja distribuicdo tem caudas pesadas, a funcdo da
meédia dos excessos, para valores grandes do argumento, geralmente varia de uma
funcdo constante (para a distribuicdo exponencial) a uma reta com inclinagéo
positiva (para a distribuicdo Pareto). No contexto de financas e(u) € denominado
shortfall.

A andlise gréfica que vai ser feita € baseada na estimativa da funcdo da média

dos excessos apresentada a seguir:

éi-(xi - U)

&(u)= (55)

onde (X, - u)>0,Y,=1ei=(12...,n).

Ao se construir o gréfico do valor de corte u versus a funcdo da média dos
excessos empirica obtém-se o gréfico da média dos excessos (ME-plot-“Mean
Excess plot”) cujas caracteristicas auxiliam na andlise explanatéria dos dados. Isto €,
se a fungdo média dos excessos empirica for paralela ao eixo das abscissas temos
indicacdo de uma distribuicéo de Gumbel. No caso da funcdo da média dos excessos
apresentar comportamento linear se tem evidéncias de uma distribuicdo Fréchet
(Embrechts et al.(1997)). Vae lembrar que no caso de se ter poucos dados

disponivels, os gréficos ficam bastante sensiveis a mudancas nos dados, para valores



grandes de u. Neste caso, uma alternativa como a fungdo da mediana dos excessos,
apresentada a seguir € aconselhavel (Rootzén and Tgjivid(1997)).

&u)={x;/F(X; - u)=081- F(u]} (56)

onde u3 0,(X, - u)>0,i=(2...,n) e F(} éfuncéo distribuigio de probabilidade
acumulada.

As figuras 3.7 e 3.8 mostram a funcéo da média dos excessos para as caudas
esquerda e direita, respectivamente. E interessante notar que as caudas esquerda e
direita apresentam comportamentos distintos. A funcdo média dos excessos para a
cauda esguerda ndo apresenta comportamento bem definido, ndo sugerindo
distribuicdo alguma. Entretanto, a funcdo da média dos excessos para a cauda direita
apresenta comportamento linear ascendente sugerindo fortemente uma distribuicéo

com cauda densa para 0s maximos.
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Figura 3.7 — Funcdo da média dos excessos empirica para a cauda esquerda da
distribuicéo dos log-retornos diérios do indice BOVESPA.
Elaborado pelo autor
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Figura 3.8 — Funcdo da média dos excessos empirica para a cauda direita da
distribuicdo dos log-retornos diarios do indice BOVESPA
Elaborado pelo autor

As edtatisticas descritivas e as informagdes gréficas até agui analisadas
sugerem que tanto a sé&rie completa de dados-base, ou sgja, a série dos log-retornos
didrios do indice BOVESPA, guanto as séries de minimos e maximos mensais néo
seguem uma distribuicdo normal. Para se confirmar esta Ultima afirmagao, o teste de

Jarque-Bera foi utilizado.

3.3.30 Testede Jarque-Bera

O teste de Jarque-Bera verifica a hipotese de uma amostra apresentar
distribuicdo normal com média e variancia ndo especificadas contra a hipétese da
amostra ndo seguir uma distribuicdo normal. O teste é baseado na assimetria e na
curtose da amostra. Para uma distribuicdo normal, a assimetria é igual a zero e a
curtose éigual a 3. O teste de Jarque-Bera testa a hip6tese de a assimetria e a curtose
da amostra serem significativamente diferentes de seus valores esperados. Este é um
teste assintético e ndo deve ser usado para amostras pequenas. Em caso de amostras
pequenas deve-se utilizar o teste de Lillie (Conover(1980)).

A edtatistica de teste €



- g
JB = NEA—+(C243) E (57)
B2 é. (Xi - %)3 é. (Xi - >T)2 K2
onde A=——, com B=- , §P = e C= , com
(2] n n (s2f
_(XI B )T)4
K= n

A edtatistica JB deve ser comparada com os vaores criticos e uma
distribuicdo qui-quadrado com 2 graus de liberdade.

O teste de Jarque-Bera aplicado a série completa em estudo rejeita a hipotese
nula de normalidade ao nivel de significancia de 0,5%, ja que o valor da estatistica de
teste € 8873,40 e o vaor critico de comparacdo é 10,60. O p-valor € desprezivel dado
o dto valor da estatistica de teste. Para as séries de minimos e maximos a rejei¢ao

também ocorre como mostrado na tabela 3.3 abaixo.

Qui-quadrado para

Série Estatistica JB p-valor

a =0.5%
Dados-Base 8873,40 10,60 (< 0,1%)
Minimos Mensais 146,25 10,60 (<0,1%)
Maximos Mensais 1648 10,60 (<0,1%)

Tabela 3.3 — Estatisticas de Jarque-Bera e p-valor para as séries completa, minimos

MeNsais e maximos mensais.

Elaborado pelo autor

O p-vaor de uma estatistica de teste € o menor nivel de significancia para o
qual a hipdtese nula seria rejeitada para um determinado conjunto de dados.
Concluida a andlise exploratoria dos dados, passa-se a analise das estimativas

dos parametros da distribuicdo de probabilidade dos méximos e minimos.



3.4 Andlise das Estimativas Encontr adas

3.4.1 Apresentacdo das Estimativas

Para 0s minimos e méaximos valores extremos mensais, pertencentes
respectivamente as caudas esquerda da distribuicdo dos log-retornos do indice
BOVESPA , tem-se:

Erro Estatistica

-locL  Parmetro Estimativa p-valor
Padréo z

X 02631 00779 33774 (<01%)

Minimos 247,0067 i -3,1629  0,1636 19,3331 (<0,1%)
s 11549 01348 85675  (<0,1%)

X 04027 00900 44744  (<01%)

Méximos 240,6686 m 3333 01455 229100 (<0,1%)
s 1,3535 01308 10,3479  (<0,1%)

Tabela 3.4 - Estimativas dos Par@metros da Distribuicdo GEV para os minimos e

maximos mensais do indice BOVESPA

Elaborado pelo autor

Pode-se observar que a funcdo log-verossimilhanca atinge valor maior para 0s
maximos mensais do indice BOVESPA, indicando que a distribuicdo densidade de
probabilidade estimada se aproxima melhor da distribuicdo densidade de
probabilidade empirica dos dados da amostra de maximos.

Outro ponto interessante € o baixo valor relativo dos erros-padréo das
estimativas dos parametros, demonstrados pelos elevados valores das estatisticas z. A
um nivel de significancia menor gque 0,1% rejeita-se a hipdtese nula dos parametros

serem iguais a zero.



A forte constatacdo estatistica de os parametros serem diferentes de zero
sugerem que tanto os dados da amostra de maximos quanto de minimos seguem uma
distribuicBo GEV, mais precisamente uma distribuicéo Fréchet.

A hipétese nula de que os valores minimos mensais e 0s valores maximos
mensais seguem uma distribuicdo de probabilidade GEV pode ser testada através de
testes de aderéncia estatisticos. No estudo em questdo, para testar a adequacdo do

model o utilizam-se os testes de Kolmogorov-Smirnov e Kuiper.

3.4.2 Os Testes de Kolmogor ov-Smirnov e Kuiper

Os testes de Kolmogorov-Smirnov e Kuiper sdo testes formais de qualidade
de gjuste utilizados para testar se a hipétese da GEV é de fato adequada. As
estatisticas testes usadas para testar a hipotese nula de que os dados provém de uma
distribuicdo GEV sdo as estatisticas de Kolmogorov-Smirnov D', D" e D , e a
estatisticade Kuiper V (Chandraet al.(1981)). definidas como:

D* :Mi ’:l‘lll_- FY(y(i))z, (58)
D' =M %Fv(ym)- %ﬁ (59)
D=Max(D*,D), (60)
V=D"+D" (61)

onde y,s80 as estatisticas de ordem, e F, (§ é a distribuicsio GEV obtida usando os

parametros estimados por méxima verossimilhanga.

Alguns valores criticos correspondentes aos niveis de significancia de 1% e
5% para estas estatisticas sdo dados na tabela 3.5 para amostras de tamanho 50, e
para amostras “muito grandes’ (denotado “N =¥ "). Por exemplo, ao se utilizar a
tabela 3.5 no caso de uma amostra de tamanho 50, a hipétese nula de que os dados
seguem uma distribuicdo GEV é rejeitada a um nivel de significancia de 5% (em

favor da hipoteses que os dados ndo seguem uma distribuicdo GEV) se todas as



guatros estatisticas, JND*,/ND" ,/ND,V/NV ultrapassarem os valores criticos
correspondentes de 0,796, 0,796, 0,856 e 1,428.

SgNr::i;Za JND* JND* JIND NI,
N =50
1% 0.940 0.944 0.088 1.639
5% 0.796 0.796 0.856 1.428
N =¥
1% 0.957 0.957 1.007 1672
5% 0.808 0.808 0.874 1.477

Tabela 3.5 — Valores Criticos das Estatisticas de Teste de Kolmogorov-Smirnov e
Kuiper Correspondentes aos Niveis de Significancia de 1% e 5%

Elaborado pelo autor

A tabela 3.6 mostra as estatisticas de teste de Kolmogorov-Smirnov e Kuiper
para os log-retornos minimos e maximos do indice BOVESPA. A hipétese nula que
os dados seguem uma distribuicdo GEV néo pode ser reeitada. Por exemplo, se

considerarmos 0s maximos mensais, as estatisticas de Kolmogorov-Smirnov e

Kuiper s0:4/ND*=0.309, vND" =0.327, ¥/ND=0.327, NV =0.636. Devido a0
fato de serem todas menores que os valores criticos correspondentes apresentados na
tabela 3.5, a hipdtese nula de que os dados seguem uma distribuicdo GEV ndo é
rejeitada a um nivel de significancia de 1%. Ja para os minimos, pode-se notar que ao
nivel de significancia de 1% a edtatistica de Kuiper € maior que o valor critico
apresentado na tabela 3.5, entretanto como as trés estatisticas de Kolmogorov-
Smirnov s&0 menores que 0s Sseus correspondentes valores criticos a afirmacdo acima
gue a hipbtese nula é verdadeira ndo pode ser contrariada ao nivel de 1% de

significancia.



JND* JND- VND Y

Minimos

. 0.789 0.889 0.889 1.679
Mensais
Mé&ximos

' 0.309 0.327 0.327 0.636
Mensais

Tabela 3.6 — Estatisticas de Bondade de Ajuste para 0s minimos e maximos mensais
do indice BOVESPA

Elaborado pelo autor

Tendo-se fortes evidéncias estatisticas de que tanto os minimos quanto 0s
méximos seguem uma distribuicdo GEV, € necessario confirmar estatisticamente
qual das trés distribuicbes GEV 0s méximos e minimos seguem.

Os parametros de forma x s&o positivos tanto para a distribuicdo GEV dos
valores minimos mensais quanto para a distribuicdo GEV dos valores maximos
mensais, sugerindo que a distribuicdo Frechét é adequada para os mesmos. O
pardmetro de forma da distribuicdo GEV dos méximos mensais € relativamente
maior que o parametro de forma da distribuicio GEV dos minimos mensais,
indicando, novamente, que a cauda direita da distribuicdo de probabilidades dos
vaores de log-retorno do indice BOVESPA € mais densa.

Entretanto, para se ter maiores evidéncias edtatisticas foi necessario a

aplicacdo do teste de Raz&o de Verossmilhanga

3.4.3 O Teste de Razéo de Verossimilhanga

O teste da Raz&o de Verossimilhanga compara a verossimilhanca do modelo
com restricdo (x =0) com ado modelo sem restricdo (x T A ). Ou sga, o teste rgjeita
a hipétese nula de que a distribuicdo é Gumbel (x =0), se o vaor da funcéo log-
verossimilhancasob H,, for muito diferente do valor da log-verossimilhanga obtido
sob a hipotese alternativa, supondo uma distribuicio GEV (x1 A).

A estatistica de teste denominada razio de verossimilhancga, é definida como



T =2Lms X, y)- Ly, v, (62

onde L(rﬁ,§ X, y) € o valor da log-verossimilhanca obtida supondo a distribuicéo
Fréchet/Weibull e L(r?b S o ) € o valor da log-verossimilhanca obtida supondo
distribuicdo Gumbel.

A edtatistica T, deve ser comparada com os valores criticos de uma
distribuicdo qui-quadrado com 1 grau de liberdade. Neste caso, valores de Ty,
significativamente positivos implicam na distribuicdo Weibull , valores de Ty,
significativamente negativos implicam na rejeicdo da hipotese nula em favor da
distribuigo Fréchet.

A tabela 3.7 apresenta os resultados do teste.

LOg Try
V erossimilhanga (p-vaor)

Distribuicdo
Gumbel paraos 0 -3.2821 1.2520 -247.0067

minimos

ensis 23.7626

Distribuigéo << 1%>
Fréchetparaos 5 5aaq -3.1629 1.1546 -235.1254

minimos
mensais

Distribui¢do
Gumbel_ para os 0 3.5043 1.4789 -240.6689

maximos

e 27.2272

Distribuicao (<1%)

Fréchetparaos g 10n7 3.3334 1.3535 -227.0553
max!|mos
mensais

Tabela 3.7 — Teste da Razéo de Verossimilhanga para o indice BOVESPA

Elaborado pelo autor

O teste de razdo de verossimilhanca sugere que tanto 0s maximos mensais do
indice BOVESPA guanto os minimos mensais seguem uma distribuicdo Fréchet.
Outra ferramenta que reforca a sugestéo do teste de razéo de verossimilhanca

€ 0 QQ-plot apresentado a seguir.



3.4.4 QQ-plot

Em estatistica, 0 QQ-plot é uma conveniente ferramenta visual para examinar
Se uma amostra segue uma determinada distribuicdo. Especificamente, os quantis de
uma distribuicdo empirica sdo confrontados graficamente com os quantis de uma
distribuicdo hipotética em estudo. Se a amostra em estudo segue a distribuicdo
hipotética ou uma transformacao linear da distribuicdo hipotética, o QQ-plot € linear,
ou sgja, o gréafico de dispersdo dos quantis da distribuicdo hipotética contra os
guantis da distribuicéo empirica tem formagao retilinea.

Ao se tratar de valores extremos, os quantis da distribuicdo empirica sdo
confrontados graficamente com os quantis de uma distribuicdo com caudas
mediamente densas como, por exemplo, a distribui¢céo exponencia. Se os dados da
amostra seguem uma distribuicdo exponencial, o QQ-plot apresenta-se como uma
reta. Se 0 QQ-plot apresenta uma concavidade a distribuicdo hipotética tem cauda
mais pesada que a distribuicdo exponencia. Ja se o QQ-plot apresenta uma
convexidade, a distribuicdo hipotética tem caudas menos pesadas que a distribui¢do
base exponencial.

Os QQ-plot apresentam-se abaixo nas figuras 3.9 e 3.10.

Quantis da distribuigao Gurnbel padrao

2 4 & 8 0 1z 14 1518
“alor absoluto dos minimos ordenados
Figura 3.9 -QQ-plot para os minimos mensais usando a distribuic¢éo gumbel padréo
como referéncia
Elaborado pelo autor



Quantis da distribuigao Gumbel padrao
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Figura 3.10 -QQ-plot para 0s maximos mensais usando a distribuicdo gumbel padréo
como referéncia
Elaborado pelo autor

Pode-se observar uma sutil convexidade no QQ-plot para 0s minimos mensais
usando como referéncia a distribuicdo Gumbel. J& para 0 QQ-plot para 0s maximos
mensais usando como referéncia a distribuicéo Gumbel observa-se a configuracéo de
uma forte tendéncia de convexidade. A distribuicdo Gumbel é uma distribuicéo de
caudas médias e, de acordo com o exposto na teria anteriormente, a formacéo de
convexidade no QQ-plot tem o significado de que a distribui¢cdo empirica tem caudas
mais pesadas do que a distribuicéo referéncia, no caso, a distribuicdo com caudas
mais pesadas é distribui¢do Fréchet.

Nas figuras 3.11 e 3.12 os QQ-plots, tanto para 0s minimos quanto para 0s
maximos, usam como referéncia a distribuicdo Fréchet padrdo com os parametros
estimados por maxima verossimilhanca. A figura 3.11, para 0s minimos mensais,
apresenta uma ligeira menor convexidade comparada com o QQ-plot exposto na
figura anterior 3.9. Jaafigura 3.11, para 0s maximos mensais, apresenta um QQ-plot
com uma configuracdo linear muito bem definida.

Logo, a auséncia ou diminuigao do efeito de convexidade ao usar como
referéncia uma distribuicdo hipotética com cauda mais densa indica que as
distribui¢des empiricas tém caudas mais densas, ou seja, seguem uma distribuicdo
Fréchet.



Quantis da dsitribuigao Frechet padrao
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Figura 3.11 -QQ-plot para os minimos mensais usando a distribui¢o fréchet padréo
como referéncia
Elaborado pelo autor

Quantis da distribuigao Frechet padrao
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Figura 3.12 -QQ-plot para os maximos mensais usando a distribui¢do fréchet padréo
como referéncia
Elaborado pelo autor



3.4.5 Densidade de Probabilidade Esperada x Densidade de Probabilidade

Observada e Analises Conclusivas

As figuras 3.13 e 3.14 mostram os histogramas dos |og-retornos dos minimos
€ maximos mensais superpostos pela curva de densidade de probabilidade calculada
utilizando os parametros estimados por maxima verossimilhanca. Observa-se 0 gjuste
entre os histogramas e as curvas, mostrando que os parametros estimados condizem
com adistribui¢do dos dados empirica.

De posse de todas as evidéncias apresentadas, fica claro concluir que os
valores dos minimos log-retornos e dos maximos log-retornos do indice BOVESPA
seguem uma distribuicdo GEV, mais especificamente uma distribuicdo Fréchet.
Obviamente, como ja observado, a série de maximos mensais apresenta uma
distribuicdo de probabilidades com cauda direita mais pesada em comparagdo com a
cauda direita da distribuicdo de probabilidades da série de minimos absolutos,
indicando que € mais provavel a ocorréncia de ganhos extremos do que perdas
extremas para o investidor que aplica no indice BOVESPA. Entretanto, esta Unica
afirmacdo ndo traz argumentos suficientes para se analisar os riscos de ta
investimento. Logo, no capitulo seguinte € apresentado uma andlise aprofundada
sobre risco, aplicada particularmente ao caso em estudo, mas que pode ser utilizada
para qualquer ativo financeiro, principalmente para ativos de renda variavel como é o
caso do indice BOVESPA.
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Figura 3.13 —Histograma e fun¢éo densidade de probabilidade para os minimos
mensais do indice BOVESPA
Elaborado pelo autor
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Figura 3.14 —Histograma e func&o densidade de probabilidade para os maximos
mensais do indice BOVESPA
Elaborado pelo autor



CAPITULO 4 -APLICACOESDO MODELO DA GEV
NO GERENCIAMENTO DE RISCO

4.1 Introducao

Uma vez determinada a distribuicéo de valores extremos que melhor se gusta
a minimos e maximos, € interessante analisar algumas ferramentas bastante Uteis no
gerenciamento de risco. As ferramentas sd0 analisadas quando se respondem

perguntas, tais como:

Qual o tempo médio de espera para que se observe um retorno diério
maior/menor que um dado valor de corte? Ou sgja, para um valor de corte
fixo (por exemplo, um nivel de —10%), qual o tempo esperado antes que o
indice BOVESPA apresente um retorno diario abaixo deste valor de
corte? Ou ainda, para um vaor de corte fixado (por exemplo, um nivel de
+15%), qual o tempo esperado antes que o indice BOVESPA apresente

um retorno diério acima deste valor de corte?

Para um periodo fixado de tempo, qual a probabilidade de se observar
pelo menos um retorno diario acimal/abaixo de um valor de corte? Ou
sgja, para um periodo fixado de tempo (por exemplo, 6 meses), qua a
probabilidade do indice BOVESPA apresente uma perda didria maior que
um dado valor de corte (por exemplo, 5%)? Ou ainda, para um periodo de
tempo fixado (por exemplo, 3 meses), qual a probabilidade de que o
indice BOVESPA apresente um ganho diario maior que um dado valor de

corte (por exemplo, +10%)?

Outra ferramenta importante é o evento de t-meses. O evento de t-meses €
um evento extremo que se espera observar em média uma vez a cada t
meses. Ou sgja, € 0 nivel de retorno diario que, em média, sO deve ser

ultrapassado em um Unico més a cadat meses.



Tais perguntas serdo respondidas neste capitulo através de informagdes

graficas e de tabelas a seguir expostas.

4.2 Calculo do Periodo do Retornou

Para iniciar as respostas a estas perguntas e propiciar uma analise objetiva do
trabalho, é necessario considerar algumas suposi ¢oes.

Primeiramente, € necessario considerar a seguéncia independente e
identicamente distribuida (i.i.d) de méximos (ou valor absoluto dos minimos) com

funcdo de distribui¢do acumulada comum G, , definida anteriormente.

Sga u>0 um vaor de corte e considere a seqiiéncia de variaveis i.i.d.’s

Bernoulli lix >} com probabilidade de sucesso dada  por

Pr{X, >u} =G, (u)=1- G, (u). Uma quantidade de interesse para gerentes de risco,
e que responde o primeiro grupo de perguntas, € o tempo de ocorréncia do primeiro
sucesso. Por exemplo, a primeira vez que um retorno diario do indice BOVESPA
sgja maior que um certo nivel u. Para determinar esta quantidade € preciso
considerar a varidvel aeatéria L(u) =min{i 3 1/X, >u}, onde i =1.2,...,n. L(u) é
uma variavel deatéria que segue uma distribuicdo Geométrica com
Pr{L(u)=j}=[G (u)) 1- G, (u)], j=12.... Portanto, L(u) representa quanto
tempo (no caso, meses) deve-se esperar até que o indice BOVESPA apresente um
ganho diario maior que u. O nimero esperado de meses para que um indice exceda

1

m. A quantidade E[L(u)] é também

um valor de corte u é E[L(u)|=

chamada perfodo de retorno para os eventos {X, >u}.
A tabela 4.1 e a figura 4.1 mostram a relagé@o entre os periodos estimados de

retorno e o valor de corte u para 0s minimos e maximos mensais do indice
BOVESPA.



Tempo estimado (meses) para que ocorra um retorno diario

u acima/abaixo de um valor de corte (u)
méaximos Minimos

0 1,0 1,0
1 1,0 1,0
2 1,0 1,0
3 14 15
4 2,1 2,5
5 3,2 4,3
6 4,8 7,2
7 6,8 11,4
8 9,2 17,3
9 12,1 254
10 15,6 36,0
1 19,6 44,6
12 242 66,7

Tabela 4.1 — Tempo estimado para que ocorra um retorno didrio acima de um valor

de corte para os maximos/minimos absolutos mensais do indice BOVESPA

Elaborado pelo autor
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Figura4.1 — Tempo estimado para que ocorra um retorno di&rio acima de um valor

de corte para 0s maximos/minimos absolutos valores mensais do indice BOVESPA



Pode-se notar que ha uma diferenca relevante entre a série de maximos e a de
minimos.

Observa-se na figura 4.1 , a comparagdo entre as curvas de tempo estimado
por valor de corte para maximos e minimos. Pode-se observar que até o valor de

u=3%, as duas séries se comportam semelhantemente. Aposu =3%, a série de
minimos comega a se distanciar da série de maximos, apresentando valores de tempo

estimado proporciona mente cada vez maiores.
4.3 Célculo da Probabilidade de Ocorréncia de Eventos Extremos

Outra informagdo relevante é ter o conhecimento das chances de o indice

diminuir (ou aumentar) mais que um dado valor de corte u. Esta questdo esta
relacionada a segunda pergunta que foi destacada anteriormente. Por exemplo, pode-
se estar interessado na probabilidade de o indice BOVESPA exceder o valor de 8%,

pelo menos uma vez, dentro dos proximos | meses. Para responder esta questdo é
necessario calcular a probabilidade r; de que o retorno diario do indice viole o valor
de corte u pelo menos uma vez antes do tempo j, que é dada por
r, = P{Lu)£ i} =1- (G« ().

A tabela 4.2 e afigura 4.2 fornecem as estimativas das probabilidades r; dos

valores méximos e minimos absolutos do indice BOVESPA ultrapassar para cima
trés valores de corte: 5%, 10%, 15%.



Probabilidade (r;) estimada de que ocorra pelo menos um retorno diério acimade um

Tempo valor de corte u (%)

esperatlo Parau=5% Parau=10% Parau=15%

(meses)

méximos minimos méximos minimos mé&ximos Minimos

0 0 0 0 0 0 0
1 31 23 6 3 2 1
2 52 41 12 5 5 1
3 67 55 18 8 7 2
4 77 65 23 11 9 3
5 84 73 28 13 u 3
6 89 80 33 16 14 4
7 R 84 37 18 16 5
8 95 88 41 20 18 5
9 9 a1 45 2 20 6
10 97 93 48 25 2 7
11 98 95 52 27 23 7
12 99 9 55 29 25 8

Tabela 4.2 — Probabilidade de que ocorra pelo menos um retorno diario acima de um

valor de corte para os maximos/minimos absolutos mensais do indice BOVESPA

Elaborado pelo autor
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Figura 4.2 — Probabilidade de que ocorra pelo menos um retorno diario acima de um

valor de corte para os maximos/minimos absolutos mensais do indice BOVESPA



Percebe-se que com o passar do tempo a probabilidade de ocorrer um evento
de magnitude u aumenta. Por exemplo, a probabilidade de ocorrer um evento na série
de maximos de magnitude maior que u =5%para n =6 € de 89% enquanto que para
n =12 é de aproximadamente 100%.

Outro ponto légico a observar € que as probabilidades de ocorréncia de u,
paraum n fixado, sempre diminuem com o aumento de u. Por exemplo, para a série
de minimos, com n =6, a probabilidade de ocorrer um evento de magnitude
absoluto maior que 5% é de 80%, enquanto que para um evento maior que 10% é de
16%.

Nota-se novamente a disparidade entre as duas séries (maximos e minimos).
Para periodos iguais de tempo, a probabilidade de ocorrer um valor qualquer de u é
sempre maior para os maximos. No entanto, para u =5%, observa-se na figura 4.2
gue as curvas sdo muito semelhantes. A diferenca das curvas se acentua na medida
gue se compara as mesmas para valores maiores de u. Para u=10% e u=15% a
diferenca das curvas é muito acentuada. O fato de semelhanca para u=5% e
diferenca bruscapara u =10% e u =15% se deve a constituicao das séries, ou sga,
para as duas séries a quantidade de valores maiores ou iguais a 5% € quase igua. Jaa
guantidade de vaores maiores que u=10% e u=15% € muito menor na série de
minimos. Por exemplo, a probabilidade que o indice BOVESPA apresente pelo
menos um retorno di&rio acima do nivel de 15% dentro dos préximos 12 meses é de
praticamente 25%. E a probabilidade de que o indice BOVESPA apresente um
retorno diario abaixo do nivel de -15% pelo menos uma vez no proximo periodo de

12 meses é de aproximadamente 8%.

A tabela 4.3 e afigura 4.3 exibe a probabilidade r; versus valores de corte

positivos u para periodos fixos de tempo: 3, 6 e 12 meses.



Probabilidade estimada de que ocorra pelo menos um retorno diario acima de um valor

Valor de de corte correspondente dentro dos proximosn meses (%)
corte u (%) Paran=3 Paran=6 Paran=12
méaximos minimos méaximos minimos méaximos Minimos

0 100 100 100 100 100 100
1 100 100 100 100 100 100
2 100 100 100 100 100 100
3 98 97 100 100 100 100
4 85 79 98 95 100 100
5 67 55 89 80 9 %
6 51 36 76 59 A 84
7 38 24 62 42 85 67
8 29 16 50 30 75 51
9 23 1 40 21 64 38
10 18 8 33 16 55 29
11 15 6 27 12 47 2
12 12 4 22 9 40 17

Tabela 4.3 — Probabilidade de que ocorra pelo menos um retorno diario dos
maximos/minimos absolutos mensais do indice BOVESPA acima de um vaor de

corte correspondente dentro dos proximos n meses.

Elaborado pelo autor
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Figura 4.3 — Probabilidade de que ocorra pelo menos um retorno di&rio dos
maximos/minimos mensais do indice BOVESPA acimal/abaixo de um valor de corte
correspondente dentro dos proximos n meses
Elaborado pelo autor

Através desta andlise chegam-se nas mesmas conclusdes acima mostradas, ou
sgja dado um u fixo, a medida que se aumenta o tempo aumenta-se a probabilidade
de ocorréncia; para um n, a medida que se aumenta o valor de u diminui-se a
probabilidade de ocorréncia; e dado u e n fixos, a probabilidade de ocorréncia é
sempre maior para a série de maximos.

Pode-se observar na figura 4.3 que até u =3 as probabilidades de ocorréncia
para maximos e minimos sdo praticamente iguais para quaisquer valores de n. A
partir deste ponto, as probabilidades comecam a diminuir, para n fixos, mais

acentuadamente para 0s minimos.

4.4 Célculo do Evento de t-meses

Além disto, pode-se calcular 0 evento t-meses. O evento t-meses, como ja
mencionado anteriormente, € um evento extremo que se espera observar pelo menos

umavez em t meses. Ou sgja, € o nivel de retorno didrio que, em média, sO deve ser



ultrapassado em um Unico més a cadat meses. Vale ressatar, que ndo € o mesmo que
afirmar que este nivel sd serd ultrapassado, por exemplo, uma Unica vez a cada 24
meses, Visto que as séries de retornos tendem a formar grupos de volatilidade. Como

E[L(u)]=

rlx(ut) , um evento de t-meses é tal que u, = Gx'lgi- Em%,
onde GX'1(>) representa a inversa da fungdo de distribuicdo acumulada G, . Por
exemplo, fixe t = 6 meses. Um evento de 6-meses é o vaor
Uo =Gy & 292G, (0.839).
e 6g

A tabela 4.4 e afigura 4.4 fornecem os eventos de 3-,6-,9-,12-,18- e 24-meses
para 0S maximos e minimos absolutos mensais do indice BOVESPA,
respectivamente. Por exemplo, espera-se que um retorno diario para o indice
BOVESPA sga maior que 10,6% , em média, somente uma vez a cada 18 meses.
Embrechts et al.(1997) refere-se a este valor de corte como “stress period”, ou sgja,

periodo de estresse.

Evento t-meses (%)

t Gy (%)
maximos Minimos
66,67 4,8 4,3
83,33 6,6 5,6
9 88,89 79 6,5
12 91,67 9,0 7,1
18 94,44 10,6 8,1
24 95,83 12,0 8,9

Tabela 4.4 — Evento t-meses para 0s maximos mensais do indice BOVESPA

Elaborado pelo autor



——maximos —=— minimos

15

13

11

Evento t-meses (%)
©

Figura 4.4 — Evento t-meses para 0s méaximos/minimos absolutos mensais do indice
BOVESPA

Elaborado pelo autor

Aqui novamente percebem-se as diferengas entre maximos e minimos, sendo

0s eventos de t-meses sempre maiores para 0s maximos para um t fixado.

4.5 Observacgbes Gerais

As diferencas acima elencadas se devem a diferencas de densidades das
caudas esquerda e direita da distribuicdo de probabilidade de log-retornos do indice
BOVESPA, sendo a cauda direita mais densa que a esquerda.

As ferramentas de andlise apresentadas e analisadas acima foram construidas,
como ja mencionado, através das séries-base de minimos e maximos. O préximo e
ultimo passo do trabalho é confrontar valores estimados com valores observados. Os
valores observados foram construidos através das séries de teste de minimos e
maximos, ja apresentadas. A comparagdo sera realizada no préximo capitulo,
concomitantemente com a conclusdo do trabalho, sugest&o de continuacdo do estudo
e outros.



CAPITULO 5—CONCLUSAO

5.1 Introducéo

Este € o capitulo de fechamento do trabalho. A segunda secdo do mesmo foi
dedicada a comparagao dos valores estimados por algumas ferramentas de andise de
risco construidas no capitulo 4 com os valores observados. Os valores observados
foram vaores conseguidos através da manipulagdo da sé&rie de dados teste de
minimos e maximos. A manipulacdo dos dados teste para a extracdo dos valores
observados pode ser redlizada de formas diferentes. As formas escolhidas de
manipulacdo serdo explicitadas concomitantemente com a apresentacéo dos valores
observados.

Na se¢do 5.3 sera apresentada a conclusdo do trabal ho.

Por fim, comentarios, recomendacdes, propostas de melhoria e continuacdo

do trabalho ser&o apresentadas na segdo 5.4.
5.2 Estimado x Observado

5.2.1 Calculo da Probabilidade de Ocorréncia de Eventos Extremos

Nesta subsecdo comparase o cdculo estimado da probabilidade de
ocorréncia de eventos extremos com os val ores observados.
O célculo da probabilidade observado utiliza as séries de teste de minimos e

maximos, e é alcancado através da expressdo abai xo:

a X
pobservado = IN (63)

t

onde X,-u>0, N, é o nimero total de “janelas de tempo” de tamanho t

completas, t € 0 nUmero de meses.



Probabilidade (r;) estimada de que ocorra pelo menos um retorno diério acimade um valor

0,
Tempo de corte u (%)

esperado Parau=5% Parau=10% Parau=15%

(meses) Maximos minimos maximos minimos maximos  Minimos

et Obs et obs et obs et obs et obs et Obs

0 0 0 0 0 0 0 0 0 0 0 0 0
1 31 33 23 20 6 7 3 4 2 1 2
2 52 47 41 33 12 12 5 5 1 4
3 67 55 55 44 18 18 8 8 7 11 2 6
4 77 60 65 55 23 2 1 1 9 15 3 9
5 84 65 73 67 28 26 13 13 1 19 3 11
6 89 70 80 80 33 30 16 16 14 23 4 13
7 92 75 &4 89 37 3 18 18 16 27 5 16
8 9% 78 838 95 41 35 20 21 18 29 5 19
9 9% 82 91 938 45 38 2 24 20 32 6 21
10 97 86 93 100 48 41 25 27 2 35 7 24
11 98 0 95 100 52 44 27 30 23 38 7 28
12 9 A 9% 100 55 47 29 33 25 40 8 31

Tabela 5.1 — Probabilidade estimada x observada de que ocorra pelo menos um
retorno didrio acima de um valor de corte para 0s méximos/minimos absolutos
mensais do indice BOVESPA

Elaborado pelo autor
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Figura 5.1 — Probabilidade estimada x observada de que ocorra pelo menos um
retorno diario acima de um valor de corte para 0s maximos mensais do indice
BOVESPA
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Figura 5.2 — Probabilidade estimada x observada de que ocorra pelo menos um
retorno diario acima de um valor de corte para os minimos absolutos mensais do
indice BOVESPA



Pode-se perceber que para u fixado em 5% e 10%, tanto para 0s maximos
guanto para os minimos, as curvas de probabilidades observadas se aproximam das
curvas de probabilidades estimadas (vide figuras 5.1 e 5.2), o que reafirma a validade
da estimacao realizada.

Entretanto, para u fixado em 15%, ha um deslocamento consideravel das
curvas de probabilidades observadas em relacdo as curvas de probabilidades
estimadas, principalmente para a série de minimos. Este deslocamento se acentua
com 0 aumento do nimero de meses, 0 que pode ser conferido nas figuras 5.1 e 5.2.
Por exemplo, para a série de minimos , a probabilidade de ocorrer um evento com
valor absoluto acima de 15% em um periodo de 6 meses é de 4%, enquanto que a
observada é de 13%. Ja para um periodo de 12 meses a probabilidade observada
cresce consideravelmente para 31%, engquanto que a estimada aumenta apenas para
8%. Logo, a estimagdo ndo condiz com o observado, no entanto, isto pode ser
explicado ela quantidade peguena de nimeros da amostra teste.

A probabilidade estimada de ocorrer, para um periodo n fixo, um evento
variavel u, caculada na tabela 4.3 e exposta graficamente na figura 4.3 ndo sera
confrontada com valores observados pois se trataria da mesma informagéo, apenas

anaisada de uma forma diferente, ja mostrada na tabela 5.1 e nas figuras 5.1 € 5.2.
5.2.3 Evento det-meses

Nesta parte do trabalho faz-se a comparacdo entre o calculo do evento de t-
meses estimado e observado.

Para o calculo do periodo observado utilizam-se as séries de teste de minimos
e maximos construidas de forma ja explicada.

Para se calcular o evento de t-meses observado utiliza-se a férmula abaixo:

Uy = Min(Max(X,,),Max(X;,),..., Max(X, ¢)) (64)

onde t € o tamanho do espagco tempora (meses), i =(12,...t), S= irtng\IQ €o
et g

numero de sub-espagos temporais de tamanho t e N é o tamanho da érie.



Evento t-meses (%)

t méximos Minimos
estimado observado estimado Observado

3 4,8 3,8 4,3 31
6 6,6 4,2 5,6 3,5
9 7,9 4,6 6,5 52
12 9,0 5,0 7,1 6,8
18 10,6 6,6 81 6,8
24 12,0 17,1 8,9 8,9

Tabela 5.2 — Evento t-meses estimado x observado para os maximos mensais do
indice BOVESPA

Elaborado pelo autor
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Figura 5.3 — Evento t-meses estimado x observado para os méximos/minimos
absolutos mensais do indice BOVESPA

Elaborado pelo autor

Ao se andisar a tabela 5.2 e a figura 5.3 percebe-se que, exceto em uma
observacdo, o evento de t-meses estimado é sempre maior que o evento de t-meses
observado, caracterizando-se, aqui neste caso, como uma ferramenta de risco
relativamente conservadora, ou sgja, sempre calcula valores absolutos de ganhos e de

perdas maiores que o observado. O valor excegdo de 17,1% pode ser desconsiderado



pois o célculo do evento de 24-meses envolve apenas dois sub-espagos temporais de
tamanho t = 24, dado o pequeno tamanho da série de teste (58 dados), 0 que propicia
distorcdes como esta. A medida que o tamanho da série de teste aumenta, e
conseqlentemente aumenta 0 nimero de sub-espacos temporais, tais distor¢cdes vao
desaparecendo.

Outra forma de comparar os valores estimados com os valores observados €

utilizando atabela e as figuras abaixo.

maximos Minimos

evento-t estimado observado evento-t estimado  observado

3 4.8 19,2 22 4,3 16,7 15

6 6,6 9,7 10 5,6 8,3 8

9 7,9 6,5 8 6,5 5,6 8

12 9,0 4,8 6 7,1 4,2 5

18 10,6 32 4 8,1 2,8 5
24 12,0 24 3 8,9 2,1 3

Tabela 5.3 — Quantidade de ultrapassagens dos val ores dos eventos de t-meses
estimadas x observadas para 0s maximos e minimos mensais do indice BOVESPA

Elaborado pelo autor
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Elaborado pelo autor
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Elaborado pelo autor



O evento de t-meses, como j& mencionado anteriormente, € o nivel que sera
ultrapassado apenas uma vez em média no periodo corrente de t meses. Por exemplo,
o valor estimado do evento de 24-meses para 0s maximos do indice BOVESPA é
12% (vide tabela 4.4), logo, em média, deve ser ultrapassado apenas uma vez a cada
24 meses. Como a amostra teste contém 58 meses, 0 valor 12% pode ser ultrapassado

8 _ 2,4 vezes. Nafigura 5.4 observa-se que o vaor de 12% é ultrapassado 3 vezes.

Ja o valor de 10,6% , que € o0 evento de 18-meses estimado, para um periodo de 58
meses, pode ser ultrapassado % =3,2 vezes. Na figura 5.4 observa-se que o valor
10,6% ¢€ ultrapassado 4 vezes. Ja para 0s minimos, 0 evento 24-meses estimado é
8,9% e deve ser ultrapassado apenas % =21 vezes, entretanto, observa-se na figura

5.5 que ele é ultrapassado 3 vezes. A tabela 5.3 mostra a comparagdo completa entre
0S numeros estimados de eventos t-meses para cadat e o nimero de vezes que 0
evento de tal magnitude foi observado nas amostras testes, tanto para 0s maximos
guanto para os minimos do indice BOVESPA. Pode-se observar que os valores
estimados para os maximos aderem melhor aos valores observados do que os valores

dos minimos.
5.3 Conclusao

O objetivo do trabalho foi desenvolver uma andlise de risco do mercado de
derivativos acionério brasileiro. Esta andlise de risco foi baseada nos vaores
extremos que 0s ganhos ou as perdas do indice futuro BOVESPA pode assumir.

Iniciamente, de posse da série de dados completa do estudo, foi realizada
uma andlise descritiva dos mesmos. Esta andlise foi muito Util para provar que a
distribuicéo dos dados em estudo tem uma forma caracteristica, apresentando caudas
mai s densas comparadas, por exemplo, com as caudas de uma distribuicdo normal.

Ao se subdividir a série completa dos dados em duas séries, a de maximos e a
de minimos foi possivel constatar também que as duas se distribuem numa formagdo

com caudas densas.



O préximo passo foi modelar as distribuicBes que 0s maximos e minimos
apresentam e para isto aplicou-se a Teoria dos Vaores Extremos. De acordo com
esta, as distribuicbes podem ser apenas de trés tipos: Gumbel, Fréchet ou Weibull,
gue sdo representadas por uma unica distribuicdo, a distribuicéo GEV.

A estimagdo dos parametros da distribuicdo GEV foi realizada através do
método de méaxima verossimilhanca, que se mostrou muito prético, apesar do seu
grau mediano de dificuldade de aplicacdo. As estimativas dos parametros
encontradas foram testadas e a chegou-se a conclusdo que tanto os minimos quanto
0s maximos seguem uma distribuicdo Fréchet. Entretanto, a densidade da cauda
esquerda da distribuicdo dos valores absolutos dos méximos apresentou-se mais
acentuada em comparacéo com a distribui¢do dos minimos. Este fato foi comprovado
ndo apenas graficamente, mas também pelo confronto dos valores das estimativas
dos parametros de escala encontrados, ja que 0 parametro dos maximos é
aproximadamente 53% maior que 0 dos minimos.

Com as estimativas dos parametros das distribuicfes foi possivel construir
ferramentas de andlise de risco, j& que estas utilizam como base a distribuicdo de
densidade de probabilidade estimada, ou segja, a que modela as séries em estudo.

As ferramentas construidas foram: Periodo do Retorno u, Probabilidade de
Ocorréncia de Eventos Extremos e Evento de t-meses. As informagbes obtidas
através destas trés ferramentas para os maximos foram confrontadas com as
informagGes obtidas para os minimos.

Para 0 Periodo de Retorno u, estimou-se que o0 tempo para ocorrer um evento
devalor absoluto u £ 3 é igual para a série dos méximos e dos minimos. Entretanto,
a medida que se aumenta u, a diferenca de tempos estimados de ocorréncia de um
evento de magnitude u nas duas séries vai aumentando, pois o tempo dos minimos
cresce mais rapidamente que o tempo dos méaximos. O gréfico u(evento de
magnitude u) x t (nUmero de meses estimado) apresenta a superposicéo inicial das
duas curvas até u£ 3 e 0 descolamento das mesmas apds u > 3. Isto € observado
pois nUmeros com magnitudes até o valor absoluto 3 sdo comuns tanto na série de
méximos quanto na série de minimos. JA nimeros cada vez maiores que 3 sd0
gradativamente mais dificeis de serem encontrados nas duas séries, entretanto na

série de minimos a dificuldade é sempre maior.



A Probabilidade de Ocorréncia de Eventos Extremos foi construida de duas
formas. Para a primeira utilizaram-se valores fixos de u e tempo variavel, ja para a
segunda utilizaram-se valores fixos de tempo e valor de u variavel. No primeiro caso,
para cada valor fixado de u, a curva de tempo x probabilidade dos maximos é sempre
acima da curva dos minimos, indicando sempre probabilidade maior de ocorréncia
do evento analisado. No segundo caso, para cada valor fixo de tempo, a curva de u x
probabilidade dos méximos € também sempre acima da curva dos minimos,
indicando novamente probabilidades maiores para 0s maximos.

Para 0 Evento de t-meses a constatacdo ndo poderia ser diferente, 0 evento
que em média sO € ultrapassado uma vez a cada t meses é sempre apresenta valor
superior para a série dos maximos.

A consisténcia dos numeros estimados através das ferramentas foi testada na
ultima parte do trabalho. Esta Ultima parte confrontou os valores estimados por
algumas ferramentas (Probabilidade de Ocorréncia de Eventos Extremos e Evento de
t-meses) com os valores observados de uma amostra teste.

Os valores observados das probabilidades de ocorréncia de eventos extremos
se mostraram muito proximos dos valores estimados pela ferramenta. Entretanto,
diferencas significativas foram especificamente encontradas para o caso em que se
fixou u =15%, ja que se pode observar as curvas de probabilidade observadas acima
das curvas estimadas tanto para 0s maximos quanto para os minimos. Certamente,
esta diferenca ocorre pois a amostra teste possui muito poucos dados maiores que
15% o0 que acaba distorcendo a andlise.

O evento de t-meses estimado foi confrontado com duas informacdes
observadas. A primeira pode ser considerada o evento de t-meses observado. Neste
caso, O estimado se mostrou relativamente uma ferramenta conservadora
apresentando valores maiores do que o0 observado tanto para 0s maximos quanto para
os minimos. No segundo caso, comparou-se uma informacao derivada do valor do
evento de t-meses, sgja ele estimado ou observado, e do tempo de observagdo. A
comparacdo mostrou coeréncia entre valores estimados e observados tanto para 0s
mMa&ximos quanto para 0s Minimos, entretanto com maior coeréncia para 0S maximos.

As ferramentas, em geral, se mostraram eficientes. Obviamente, nenhuma

acdo em relagdo a risco deve ser tomada Unica e exclusivamente com base nas



informagdes produzidas pelas ferramentas. Entretanto, o banco no qual foi
desenvolvido o trabalho comegou a analisar as informagdes geradas, as quais servem
como subsidios complementares para uma tomada de decisdo até mesmo no que

tange, ndo sO temas relacionados a risco, mas também a decisdes de investimento.

5.4 Comentarios Finais e Recomendactes

O trabalho foi de muito valia pois conciliou necessidades do estagio na
empresa citada, desenvolver uma andlise de risco do IBOVESPA com base na TVE e
gue posteriormente poderia ser utilizada para outros ativos, com a oportunidade de
consolidagdo e aprendizagem de ferramentas estatisticas e mateméticas essenciais.

Alguns acontecimentos merecem ser destacados.

O primeiro foi o problema encontrado com a série de dados. A série base
utilizada tem 2375 dados. Como o estudo envolve valores extremos, da série base os
mesmos necessitam ser extraidos, restando apenas 113 dados para a série de
maximos e 114 dados para a série de minimos. As quantidades de dados para a série
de méximos e de minimos poderiam ser ainda menores se 0 método de selecéo fosse
outro aém do escolhido, no caso “block maxima’ mensal. Entretanto, escolhendo o
método de selecdo mensal percebe-se, na série de extremos, valores de magnitude
ndo téo elevada, ou sga, valores que ndo fazem teoricamente parte das caudas da
distribuicdo de probabilidade da série base. Este foi um dilema que teve de ser
resolvido: ou se diminuia 0 nimero de dados das séries de méximos e minimos
através da selecdo, por exemplo, anua e trabalhavase com numeros “mais’
extremos, pertencentes as caudas; ou aumentava-se 0 niumero de dados das séries e
trabal hava-se também com dados mais interiores da distribuicéo de probabilidade da
série base. O autor escolheu trabalhar com um numero maior de dados. Uma
recomendacdo de continuacdo do trabalho € a construcdo de modelos através de
séries de maximos e minimos selecionados por periodo distintos (bimestral,
semestral, anual), e posteriormente a comparagdo dos mesmos.

Outro problema foi encontrado na validacdo do modelo. A vaidacdo do
modelo ocorreu através do confronto de dados observados com os dados estimados

pelo modelo. Teve-se 0 cuidado de escolher uma amostra de teste que contivesse



dados aleatoriamente escolhidos de todo o periodo da série base. Neste caso, 0s
dados das séries de teste e das séries de maximos e de minimos continham valores
representantes de todos os periodos, ou sgja, de periodos de baixa e de ata
volatilidade. O modelo foi validado para o proprio periodo de estimagéo, ou sgja, ndo
foi utilizado como ferramenta de previséo e posteriormente validado. Para que uma
validacdo de previsdo ocorresse dever-se-ia utilizar, por exemplo, a primeira metade
dos dados temporalmente ordenados das séries completas de maximos e de minimos
para se construir 0 modelo, e a segunda metade para se testar 0 modelo. Logo, esta é
uma segunda recomendacao de continuacdo do trabalho, ou sgja, validar seu poder de
previsio.

Outro ponto interessante e que vale ser destacado é a questédo da manipulacéo
dos dados observados para que se tornem compardveis com as informagdes
estimadas. O autor entende que a manipulagdo pode ser realizada de vérias formas
conquanto que exista certa |6gica que possibilite comparacéo. Sendo assim, algumas
comparacOes foram realizadas, sendo a comparacdo do Periodo de Retorno u néo
efetuada, dada a relativa complexidade na manipulagcdo dos dados observados.
Portanto, a comparag@o do Periodo de Retorno u estimado com o observado fica
como aterceira recomendacdo de extensdo do assunto estudado.

O ultimo ponto a ser mencionado é em relacdo a adocdo das ferramentas aquii
desenvolvidas como auxiliares na gestéo de risco. As ferramentas aqui desenvolvidas
podem ser muito bem utilizadas como auxiliares no gerenciamento de risco ndo so de
indices de acdes e acOes mas também de opgdes e contratos de taxas de juros (renda
fixa), sendo necessario apenas a construcdo das séries de retornos dos mesmos. A
implementacéo de um sistema que gere tais informagdes € simples e demanda nada
mais que algumas linhas de programagdo e um programa como o Matlab (mais

precisamente 0 seu médulo EVIM, o médulo de valores extremos do Matlab).
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APENDICE

APENDICE A —SERIESHISTORICAS



Séries dos Maximos e Minimos Valores Mensais da Série de Log-
Retornos Diéarios dos Precos do futuro de IBOVESPA

Posi¢cdo Temporal Maximos | Minimos
1 11,02 -2,94
2 12,64 -9,69
3 6,30 -11,19
4 10,10 -8,34
5 11,46 -3,44
6 8,10 -5,51
7 4,47 -4,31
8 4,71 -11,09
9 5,50 -3,69
10 4,58 -4,89
11 6,03 -4,98
12 3,71 -10,38
13 9,31 6,83
14 22,81 -10,15
15 7,70 -5,25
16 5,17 2,64
17 4,99 4,99
18 3,62 -3,28
19 4,50 -3,38
20 3,77 -3,31
21 2,24 -2,87
22 5,29 -6,75
23 4,58 -4,36
24 6,43 -1,85
25 3,95 -1,93
26 2,50 -4.76
27 2,63 -2,52
28 2,51 -2,69
29 3,88 -1,94
30 3,54 -3,35
31 3,88 2,12
32 2,72 -2,86
33 170 -1,83
34 2,30 -1,62
35 2,18 -2,63
36 2,79 -1,67
37 4,17 -2,45
38 2,57 -2,63
39 4,24 -2.23
40 2,50 -3,49
41 3,64 -1,50
42 8,45 -8,90
43 5,03 -6,01
44 9,02 -3,86
45 6,22 16,22
46 9,26 -10,76
47 4,32 -3,92
48 3,39 -575
49 2,57 -1,30
50 1,91 -1,26
51 2,85 -5,89
52 5,52 -6,65
53 6,77 -5,48
54 3,69 -5,46
55 6,65 -10,48
56 17,12 -17,23
57 7,50 -4,46
58 4,98 -9,20
59 6,01 -8,88
60 28,82 -10,50
61 8,40 -3,17
62 4,76 -3,05
63 2,86 -2,14
64 5,89 -5,08
65 2,15 -3,11
66 3,03 -2,90
67 3,25 -2,40
68 3,79 -2,90
69 4,85 2,44
70 2,83 -2,23
71 4,28 -6,59
72 3,43 -2,84
73 4,56 -3,82
74 3,92 -5,17
75 4,04 -3,24
76 4,88 -2,21
77 2,96 -3,64




78 3,27 2,77
79 1,90 -4.00
80 3,01 307
81 4,00 23,78
82 4,85 4,77
83 7,34 -1,60
84 2,53 4,09
85 3,25 5,43
86 422 522
87 3,37 -3,39
88 2,09 -4,29
89 2,55 2,70
90 1,94 3,50
o1 4,96 9,63
92 4,93 2,48
93 6,60 -4,39
94 3,69 310
95 2,80 393
9% 3,02 3,23
97 3,48 -3,00
9% 2,50 4,27
99 2,48 417
100 3,42 5,22
101 441 6,75
102 4,42 325
103 4,26 -5,40
104 6,15 4,67
105 2,60 227
106 3,55 2,20
107 3,24 3,45
108 2,96 3,95
109 2,79 299
110 2,88 224
111 3,02 -3,69
112 2,43 2,85
113 3,36 3,31

SériesTestedos M aximos e Minimos Valores M ensaisde Teste

indice | Maximos | Minimos
1 12,64 -8,34
2 6,30 -344
3 8,10 -4,89
4 4,58 -2,64
5 6,03 -4,99
6 3,71 -3,38
7 22,81 -3,31
8 5,17 2,87
9 4,50 -6.75
10 3,77 -4,36
11 2,24 -1,85
12 4,58 -3,35
3 2,51 212
14 3,88 -2,63
15 2,18 -1,67
16 2,79 -2,45
17 4,17 -3,49
18 2,57 -1,50
19 2,50 -9,50
20 8,45 -3,92
21 5,03 -6,65
22 9,02 -10,48
23 6,22 -17,23
24 9,26 -8,88
25 2,57 -3.05
26 191 -2,14
27 5,52 -3,11
28 6,65 -2,40
29 17,12 -2,90
30 7,50 -2,84
31 4,98 -5,17
32 11,05 -3.24
33 4,76 -3,64
34 5,89 -2,77
35 3,03 -3,78
36 3,25 -1,60
37 3,79 -5,43
38 2,83 -3,39
39 343 -2,70
40 3,92 -4,39
41 4,04 -3,10




42 4,88 -393
23 3,01 323
44 2,53 -3,00
25 4,22 6,75
26 2,55 3,25
47 1,94 4,67
28 2,96 227
29 6,60 2,20
50 2,80 395
51 2,50
52 2,48
53 2,41
54 2,22
55 2,26
56 6,15
57 2,60
58 2,43




